People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ribeiro, Clarisse
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2023Development of Silk Fibroin Scaffolds for Vascular Repaircitations
- 2023Natural Indigenous Paper Substrates for Colorimetric Bioassays in Portable Analytical Systems: Sustainable Solutions from the Rain Forests to the Great Plainscitations
- 2023Graphene Based Printable Conductive Wax for Low‐Power Thermal Actuation in Microfluidic Paper‐Based Analytical Devicescitations
- 2023Enhanced neuronal differentiation by dynamic piezoelectric stimulationcitations
- 2022Electrospun Magnetic Ionic Liquid Based Electroactive Materials for Tissue Engineering Applicationscitations
- 2022Piezoelectric and Magnetically Responsive Biodegradable Composites with Tailored Porous Morphology for Biotechnological Applicationscitations
- 2022Environmentally friendly conductive screen‐printable inks based on N‐Doped graphene and polyvinylpyrrolidonecitations
- 2022Understanding Myoblast Differentiation Pathways When Cultured on Electroactive Scaffolds through Proteomic Analysiscitations
- 2022Printed multifunctional magnetically activated energy harvester with sensing capabilitiescitations
- 2022Tuning magnetic response and ionic conductivity of electrospun hybrid membranes for tissue regeneration strategiescitations
- 2021Ionic Liquid-Based Materials for Biomedical Applicationscitations
- 2020Patterned Piezoelectric Scaffolds for Osteogenic Differentiationcitations
- 2020Morphology dependence degradation of electro-and magnetoactive poly(3-hydroxybutyrateco-hydroxyvalerate) for tissue engineering applicationscitations
- 2020Silica nanoparticles surface charge modulation of the electroactive phase content and physical-chemical properties of poly(vinylidene fluoride) nanocompositescitations
- 2020Magnetic Bioreactor for Magneto-, Mechano- and Electroactive Tissue Engineering Strategiescitations
- 2020Biodegradable Hydrogels Loaded with Magnetically Responsive Microspheres as 2D and 3D Scaffoldscitations
- 2020Morphology Dependence Degradation of Electro- and Magnetoactive Poly(3-hydroxybutyrate-co-hydroxyvalerate) for Tissue Engineering Applicationscitations
- 2019Development of bio-hybrid piezoresistive nanocomposites using silk-elastin protein copolymerscitations
- 2019Ionic-liquid-based electroactive polymer composites for muscle tissue engineeringcitations
- 2018Tailored biodegradable and electroactive poly(hydroxybutyrate-co-hydroxyvalerate) based morphologies for tissue engineering applicationscitations
- 2018Electroactive poly(vinylidene fluoride)-based structures for advanced applicationscitations
- 2018Multifunctional platform based on electroactive polymers and silica nanoparticles for tissue engineering applicationscitations
- 2018Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applicationscitations
- 2018Electroactive biomaterial surface engineering effects on muscle cells differentiationcitations
- 2018Relation between fiber orientation and mechanical properties of nano-engineered poly(vinylidene fluoride) electrospun composite fiber matscitations
- 2018Fluorinated polymers as smart materials for advanced biomedical applicationscitations
- 2018Tailored Biodegradable and Electroactive Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Based Morphologies for Tissue Engineering Applicationscitations
- 2017Nanodiamonds/poly(vinylidene fluoride) composites for tissue engineering applicationscitations
- 2016Electromechanical actuators based on poly(vinylidene fluoride) with [N1 1 1 2(OH)][NTf2] and [C2mim] [C2SO4]citations
- 2016Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applicationscitations
- 2015Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettabilitycitations
- 2015Piezoelectric polymers as biomaterials for tissue engineering applicationscitations
Places of action
Organizations | Location | People |
---|
article
Understanding Myoblast Differentiation Pathways When Cultured on Electroactive Scaffolds through Proteomic Analysis
Abstract
<p>Electroactive materials allow the modulation of cell-materials interactions and cell fate, leading to advanced tissue regeneration strategies. Nevertheless, their effect at the cellular level is still poorly understood. In this context, the proteome analysis of C2C12 cell differentiation cultured on piezoelectric polymer films with null average surface charge (non-poled), net positive surface charge (poled +), and net negative surface charge (poled -) has been addressed. Protein/pathway alterations for skeletal muscle development were identified comparing proteomic profiles of C2C12 cells differentiated on poly(vinylidene fluoride), with similar cells differentiated on a polystyrene plate (control), using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). Only significantly expressed proteins (P < 0.01, analysis of variance) were used for bioinformatic analyses. A total of 37 significantly expressed proteins were detected on the C2C12 proteome with PVDF "poled -" at 24 h, whereas on the PVDF "poled +", a total of 105 significantly expressed proteins were considered. At 5 days of differentiation, the number of significantly expressed proteins decreased to 23 and 31 in cells grown on negative and positive surface charge, respectively, the influence of surface charge being more explicit in some proteins. In both cases, proteins such as Fbn1, Hspg2, Rcn3, Tgm2, Mylpf, Anxa2, and Anxa6, involved in calcium-related signaling, were highly expressed during myoblast differentiation. Furthermore, some proteins involved in muscle contraction (Acta2, Anxa2, and Anxa6) were detected in the PVDF "poled +" sample. Upregulation of several proteins that enhance skeletal muscle development was detected in the PVDF "poled -" sample, including Ckm (422%), Tmem14c (384%), Serpinb6a (460%), adh7 (199%), and Car3 (171%), while for the "poled +" samples, these proteins were also upregulated at a smaller magnitude (254, 317, 253, 123, and 72%, respectively). Other differentially expressed proteins such as Mylpf (189%), Mybph (168%), and Mbnl1 (168%) were upregulated only in PVDF "poled -" samples, while Hba-a1 levels (581%) were increased in the PVDF "poled +" sample. On the other hand, cells cultured on non-poled samples have no differences with respect to the ones cultured on the control, in contrary to the poled films, with overall surface charge, demonstrating the relevance of scaffold surface charge on cell behavior. This study demonstrates that both positive and negative overall surface charges promote the differentiation of C2C12 cells through involvement of proteins related with the contraction of the skeletal muscle cells, with a more pronounced effect with the negative charged surfaces.</p>