Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Honoré, Bent

  • Google
  • 1
  • 6
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Understanding Myoblast Differentiation Pathways When Cultured on Electroactive Scaffolds through Proteomic Analysis12citations

Places of action

Chart of shared publication
Lanceros-Méndez, Senentxu
1 / 387 shared
Gomes, Andreia C.
1 / 12 shared
Neves-Petersen, Maria Teresa
1 / 1 shared
Ribeiro, Clarisse
1 / 32 shared
Martins, Vítor M.
1 / 1 shared
Ribeiro, Sylvie
1 / 8 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Lanceros-Méndez, Senentxu
  • Gomes, Andreia C.
  • Neves-Petersen, Maria Teresa
  • Ribeiro, Clarisse
  • Martins, Vítor M.
  • Ribeiro, Sylvie
OrganizationsLocationPeople

article

Understanding Myoblast Differentiation Pathways When Cultured on Electroactive Scaffolds through Proteomic Analysis

  • Lanceros-Méndez, Senentxu
  • Honoré, Bent
  • Gomes, Andreia C.
  • Neves-Petersen, Maria Teresa
  • Ribeiro, Clarisse
  • Martins, Vítor M.
  • Ribeiro, Sylvie
Abstract

<p>Electroactive materials allow the modulation of cell-materials interactions and cell fate, leading to advanced tissue regeneration strategies. Nevertheless, their effect at the cellular level is still poorly understood. In this context, the proteome analysis of C2C12 cell differentiation cultured on piezoelectric polymer films with null average surface charge (non-poled), net positive surface charge (poled +), and net negative surface charge (poled -) has been addressed. Protein/pathway alterations for skeletal muscle development were identified comparing proteomic profiles of C2C12 cells differentiated on poly(vinylidene fluoride), with similar cells differentiated on a polystyrene plate (control), using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). Only significantly expressed proteins (P &lt; 0.01, analysis of variance) were used for bioinformatic analyses. A total of 37 significantly expressed proteins were detected on the C2C12 proteome with PVDF "poled -" at 24 h, whereas on the PVDF "poled +", a total of 105 significantly expressed proteins were considered. At 5 days of differentiation, the number of significantly expressed proteins decreased to 23 and 31 in cells grown on negative and positive surface charge, respectively, the influence of surface charge being more explicit in some proteins. In both cases, proteins such as Fbn1, Hspg2, Rcn3, Tgm2, Mylpf, Anxa2, and Anxa6, involved in calcium-related signaling, were highly expressed during myoblast differentiation. Furthermore, some proteins involved in muscle contraction (Acta2, Anxa2, and Anxa6) were detected in the PVDF "poled +" sample. Upregulation of several proteins that enhance skeletal muscle development was detected in the PVDF "poled -" sample, including Ckm (422%), Tmem14c (384%), Serpinb6a (460%), adh7 (199%), and Car3 (171%), while for the "poled +" samples, these proteins were also upregulated at a smaller magnitude (254, 317, 253, 123, and 72%, respectively). Other differentially expressed proteins such as Mylpf (189%), Mybph (168%), and Mbnl1 (168%) were upregulated only in PVDF "poled -" samples, while Hba-a1 levels (581%) were increased in the PVDF "poled +" sample. On the other hand, cells cultured on non-poled samples have no differences with respect to the ones cultured on the control, in contrary to the poled films, with overall surface charge, demonstrating the relevance of scaffold surface charge on cell behavior. This study demonstrates that both positive and negative overall surface charges promote the differentiation of C2C12 cells through involvement of proteins related with the contraction of the skeletal muscle cells, with a more pronounced effect with the negative charged surfaces.</p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • Calcium
  • spectrometry
  • liquid chromatography
  • liquid chromatography-mass spectrometry
  • tandem mass spectrometry