People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chiabrera, Francesco Maria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Operando Electron Microscopy and Impedance Analysis of Solid Oxide Electrolysis and Fuel Cellscitations
- 2023Reconstruction of Low Dimensional Electronic States by Altering the Chemical Arrangement at the SrTiO3 Surfacecitations
- 2022Ion Intercalation in Lanthanum Strontium Ferrite for Aqueous Electrochemical Energy Storage Devicescitations
- 2022The impact of Mn nonstoichiometry on the oxygen mass transport properties of La Sr Mn O thin filmscitations
- 2022Freestanding Perovskite Oxide Filmscitations
- 2022Defect-induced magnetism in homoepitaxial SrTiO3citations
- 2022Defect-induced magnetism in homoepitaxial SrTiO3citations
- 2021Direct Measurement of Oxygen Mass Transport at the Nanoscalecitations
- 2021A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cells
- 2019Interface Engineering in Mixed Ionic Electronic Conductor Thin Films for Solid State Devices
- 2019Engineering Transport in Manganites by Tuning Local Nonstoichiometry in Grain Boundariescitations
Places of action
Organizations | Location | People |
---|
article
Ion Intercalation in Lanthanum Strontium Ferrite for Aqueous Electrochemical Energy Storage Devices
Abstract
Ion intercalation of perovskite oxides in liquid electrolytes is a very promising method for controlling their functional properties while storing charge, which opens up its potential application in different energy and information technologies. Although the role of defect chemistry in oxygen intercalation in a gaseous environment is well established, the mechanism of ion intercalation in liquid electrolytes at room temperature is poorly understood. In this study, the defect chemistry during ion intercalation of La<sub>0.5</sub>Sr<sub>0.5</sub>FeO<sub>3-<i>δ</i></sub> thin films in alkaline electrolytes is studied. Oxygen and proton intercalation into the La<sub>1-<i>x</i></sub>Sr<i><sub>x</sub></i>FeO<sub>3-<i>δ </i></sub>perovskite structure is observed at moderate electrochemical potentials (0.5 to -0.4 V), giving rise to a change in the oxidation state of Fe (as a charge compensation mechanism). The variation of the concentration of holes as a function of the intercalation potential is characterized by in situ ellipsometry, and the concentration of electron holes is indirectly quantified for different electrochemical potentials. Finally, a dilute defect chemistry model that describes the variation of defect species during ionic intercalation is developed.