People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brocks, Geert H. L. A.
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Probing the Reactivity of ZnO with Perovskite Precursorscitations
- 2024Temperature-Dependent Chirality in Halide Perovskitescitations
- 2023In Situ IR SpectroscopyStudies of AtomicLayer-Deposited SnO2 on Formamidinium-Based Lead Halide Perovskitecitations
- 2023In Situ IR SpectroscopyStudies of AtomicLayer-Deposited SnO2 on Formamidinium-Based Lead Halide Perovskitecitations
- 2023The role of sulfur in sulfur-doped copper(I) iodide p-type transparent conductorscitations
- 2023Calculating the Circular Dichroism of Chiral Halide Perovskitescitations
- 2022Decomposition of Organic Perovskite Precursors on MoO3citations
- 2019Absolute energy level positions in tin- and lead-based halide perovskitescitations
- 2013Crystalline CoFeB/graphite interfaces for carbon spintronics fabricated by solid phase epitaxycitations
- 2013Magnetic Properties of bcc-Fe(001)/C60 Interfaces for Organic Spintronicscitations
Places of action
Organizations | Location | People |
---|
article
Decomposition of Organic Perovskite Precursors on MoO3
Abstract
<p>Despite the rapid progress in perovskite solar cells, their commercialization is still hindered by issues regarding long-term stability, which can be strongly affected by metal oxide-based charge extraction layers next to the perovskite material. With MoO3 being one of the most successful hole transport layers in organic photovoltaics, the disastrous results of its combination with perovskite films came as a surprise but was soon attributed to severe chemical instability at the MoO3/perovskite interface. To discover the atomistic origin of this instability, we combine density functional theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) measurements to investigate the interaction of MoO3 with the perovskite precursors MAI, MABr, FAI, and FABr. From DFT calculations we suggest a scenario that is based upon oxygen vacancies playing a key role in interface degradation reactions. Not only do these vacancies promote decomposition reactions of perovskite precursors, but they also constitute the reaction centers for redox reactions leading to oxidation of the halides and reduction of Mo. Specifically iodides are proposed to be reactive, while bromides do not significantly affect the oxide. XPS measurements reveal a severe reduction of Mo and a loss of the halide species when the oxide is interfaced with I-containing precursors, which is consistent with the proposed scenario. In line with the latter, experimentally observed effects are much less pronounced in case of Br-containing precursors. We further find that the reactivity of the MoO3 substrate can be moderated by reducing the number of oxygen vacancies through a UV/ozone treatment, though it cannot be fully eliminated. </p>