People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tao, Shuxia
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Probing the Reactivity of ZnO with Perovskite Precursorscitations
- 2024Temperature-Dependent Chirality in Halide Perovskitescitations
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023In Situ IR SpectroscopyStudies of AtomicLayer-Deposited SnO2 on Formamidinium-Based Lead Halide Perovskitecitations
- 2023In Situ IR SpectroscopyStudies of AtomicLayer-Deposited SnO2 on Formamidinium-Based Lead Halide Perovskitecitations
- 2023The role of sulfur in sulfur-doped copper(I) iodide p-type transparent conductorscitations
- 2023Calculating the Circular Dichroism of Chiral Halide Perovskites:A Tight-Binding Approachcitations
- 2023Effect of the Precursor Chemistry on the Crystallization of Triple Cation Mixed Halide Perovskitescitations
- 2023Calculating the Circular Dichroism of Chiral Halide Perovskitescitations
- 2022Decomposition of Organic Perovskite Precursors on MoO 3 :Role of Halogen and Surface Defectscitations
- 2022Decomposition of Organic Perovskite Precursors on MoO3citations
- 2022What Happens at Surfaces and Grain Boundaries of Halide Perovskites:Insights from Reactive Molecular Dynamics Simulations of CsPbI 3citations
- 2022Transferable Classical Force Field for Pure and Mixed Metal Halide Perovskites Parameterized from First-Principlescitations
- 2022What Happens at Surfaces and Grain Boundaries of Halide Perovskitescitations
- 2021Efficient Computation of Structural and Electronic Properties of Halide Perovskites Using Density Functional Tight Bindingcitations
- 2021Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI3citations
- 2021Stretchable AgX (X = Se, Te) for Efficient Thermoelectrics and Photovoltaicscitations
- 2021Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI3:A Reactive Force Field Molecular Dynamics Studycitations
- 2021Efficient Computation of Structural and Electronic Properties of Halide Perovskites Using Density Functional Tight Binding:GFN1-xTB Methodcitations
- 2020Dopant site in indium-doped SrTiO3 photocatalystscitations
- 2020Dopant site in indium-doped SrTiO 3 photocatalystscitations
- 2020Efficient modelling of ion structure and dynamics in inorganic metal halide perovskitescitations
- 2019Absolute energy level positions in tin- and lead-based halide perovskitescitations
- 2019Efficient intraband hot carrier relaxation in Sn and Pb perovskite semiconductors mediated by strong electron-phonon couplingcitations
- 2018Efficient intraband hot carrier relaxation in the Perovskite semiconductor Cs1- xRbxSnI3 mediated by strong electron-phonon couplingcitations
- 2018Partially replacing Pb2+ by Mn2+ in hybrid metal halide perovskitescitations
- 2018Partially replacing Pb 2+ by Mn 2+ in hybrid metal halide perovskites:Structural and electronic propertiescitations
- 2018Cs1−xRbxSnI3 light harvesting semiconductors for perovskite photovoltaicscitations
- 2018Probing the occupied and unoccupied density of states of hybrid Perovskites
- 2018Cs 1-: X Rb x SnI 3 light harvesting semiconductors for perovskite photovoltaicscitations
- 2014Electron emission processes in photocathodes and dynodescitations
- 2011DFT studies of hydrogen storage properties of Mg0.75Ti0.25citations
- 2010Analysis of deformation twins and the partially dehydrogenated microstructure in nanocrystalline magnesium hydride (MgH2) powdercitations
- 2008Cubic MgH2 stabilized by alloying with transition metals : a density functional theory studycitations
Places of action
Organizations | Location | People |
---|
article
Decomposition of Organic Perovskite Precursors on MoO3
Abstract
<p>Despite the rapid progress in perovskite solar cells, their commercialization is still hindered by issues regarding long-term stability, which can be strongly affected by metal oxide-based charge extraction layers next to the perovskite material. With MoO3 being one of the most successful hole transport layers in organic photovoltaics, the disastrous results of its combination with perovskite films came as a surprise but was soon attributed to severe chemical instability at the MoO3/perovskite interface. To discover the atomistic origin of this instability, we combine density functional theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) measurements to investigate the interaction of MoO3 with the perovskite precursors MAI, MABr, FAI, and FABr. From DFT calculations we suggest a scenario that is based upon oxygen vacancies playing a key role in interface degradation reactions. Not only do these vacancies promote decomposition reactions of perovskite precursors, but they also constitute the reaction centers for redox reactions leading to oxidation of the halides and reduction of Mo. Specifically iodides are proposed to be reactive, while bromides do not significantly affect the oxide. XPS measurements reveal a severe reduction of Mo and a loss of the halide species when the oxide is interfaced with I-containing precursors, which is consistent with the proposed scenario. In line with the latter, experimentally observed effects are much less pronounced in case of Br-containing precursors. We further find that the reactivity of the MoO3 substrate can be moderated by reducing the number of oxygen vacancies through a UV/ozone treatment, though it cannot be fully eliminated. </p>