People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Badreldin, Ahmed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Cooperative electrocatalytic effect of Pd and Ce alloys nanoparticles in PdCe@CNWs electrode for oxygen evolution reaction (OER)citations
- 2022Incorporation of manganese carbonyl sulfide ((Mn2S2 (CO)7) and mixed metal oxides-decorated reduced graphene oxide (MnFeCoO4/rGO) as a selective anode toward efficient OER from seawater splitting under neutral pH conditionscitations
- 2021Early transition-metal-based binary oxide/nitride for efficient electrocatalytic hydrogen evolution from saline water in different pH environmentscitations
- 2021Incorporation of Manganese Carbonyl Sulfide ((Mn2S2 (CO)7) and Mixed Metal Oxides-Decorated Reduced Graphene Oxide (MnFeCoO4/rGO) as a Selective Anode Toward Efficient OER from Seawater Splitting Under Neutral PH Conditions
- 2021Theoretical and experimental investigations of Co-Cu bimetallic alloys-incorporated carbon nanowires as an efficient bi-functional electrocatalyst for water splittingcitations
Places of action
Organizations | Location | People |
---|
article
Early transition-metal-based binary oxide/nitride for efficient electrocatalytic hydrogen evolution from saline water in different pH environments
Abstract
Using abundant seawater can reduce reliance on freshwater resources for hydrogen production from electrocatalytic water splitting. However, seawater has detrimental effects on the stability and activity of the hydrogen evolution reaction (HER) electrocatalysts under different pH conditions. In this work, we report the synthesis of binary metallic core-sheath nitride@oxynitride electrocatalysts [Ni(ETM)]δ+-[O-N]δ-, where ETM is an early transition metal V or Cr. Using NiVN on a nickel foam (NF) substrate, we demonstrate an HER overpotential as low as 32 mV at -10 mA cm-2 in saline water (0.6 M NaCl). The results represent an advancement in saline water HER performance of earth-abundant electrocatalysts, especially under near-neutral pH range (i.e., pH 6-8). Doping ETMs in nickel oxynitrides accelerates the typically rate-determining H2O dissociation step for HER and suppresses chloride deactivation of the catalyst in neutral-pH saline water. Heterointerface synergism occurs through H2O adsorption and dissociation at interfacial oxide character, while adsorbed H∗ proceeds via Heyrovsky or Tafel step on the nitride character. This electrocatalyst showed stable performance under a constant current density of -50 mA cm-2 for 50 h followed by additional 50 h at -100 mA cm-2 in a neutral saline electrolyte (1 M PB + 0.6 M NaCl). Contrarily, under the same conditions, Pt/C@NF exhibited significantly low performance after a mere 4 h at -50 mA cm-2. The low Tafel slope of 25 mV dec-1 indicated that the reaction is Tafel limited, unlike commercial Pt/C, which is Heyrovsky limited. We close by discussing general principles concerning surface charge delocalization for the design of HER electrocatalysts in pH saline environments.