People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hambsch, Mike
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Impact of Thermal Annealing on the Dissolution of Semiconducting Polymer Thin Filmscitations
- 2024Eco‐Friendly Approach to Ultra‐Thin Metal Oxides‐ Solution Sheared Aluminum Oxide for Half‐Volt Operation of Organic Field‐Effect Transistorscitations
- 2024Eco‐Friendly Approach to Ultra‐Thin Metal Oxides‐ Solution Sheared Aluminum Oxide for Half‐Volt Operation of Organic Field‐Effect Transistorscitations
- 2023Tailoring the Morphology of a Diketopyrrolopyrrole-based Polymer as Films or Wires for High-Performance OFETs using Solution Shearingcitations
- 2023On-water surface synthesis of electronically coupled 2D polyimide-MoS2 van der Waals heterostructurecitations
- 2023Influence of chemical interactions on the electronic properties of BiOI/organic semiconductor heterojunctions for application in solution-processed electronics
- 2022Thermal behavior and polymorphism of 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b] thiophene thin filmscitations
- 2022Investigating the morphology of bulk heterojunctions by laser photoemission electron microscopycitations
- 2021Band gap engineering in blended organic semiconductor films based on dielectric interactionscitations
- 2021Ultrasoft and High-Mobility Block Copolymers for Skin-Compatible Electronics
- 2021Ultrasoft and High‐Mobility Block Copolymers for Skin‐Compatible Electronicscitations
- 2021Multimode Operation of Organic--Inorganic Hybrid Thin-Film Transistors Based on Solution-Processed Indium Oxide Filmscitations
- 2020Near–atomic-scale observation ofgrain boundaries inalayer-stacked two-dimensional polymercitations
- 2020Ultrasoft and High-Mobility Block Copolymers for Skin-Compatible Electronics
- 2019Anisotropic Polaron Delocalization in Conjugated Homopolymers and Donor-Acceptor Copolymerscitations
- 2019Mitigating Meniscus Instabilities in Solution-Sheared Polymer Films for Organic Field-Effect Transistorscitations
- 2018Alkyl Branching Position in Diketopyrrolopyrrole Polymerscitations
Places of action
Organizations | Location | People |
---|
article
Multimode Operation of Organic--Inorganic Hybrid Thin-Film Transistors Based on Solution-Processed Indium Oxide Films
Abstract
Solution-processed metal oxide (MO) thin films have been extensively studied for use in thin-film transistors (TFTs) due to their high optical transparency, simplicity of fabrication methods, and high electron mobility. Here, we report, for the first time, the improvement of the electronic properties of solution-processed indium oxide (InOx) films by the subsequent addition of an organic p-type semiconductor material, here 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), yielding organic–inorganic hybrid TFTs. The addition of TIPS-pentacene not only improves the electron mobility by enhancing the charge carrier percolation pathways but also improves the electronic and temporal stability of the IDS(VG) characteristics as well as reduces the number of required spin-coating steps of the InOx precursor solution. Very interestingly, the introduction of 10 nm TIPS-pentacene films on top of 15 nm InOx layers allows the fabrication of either enhancement- or depletion-mode devices with only minimal changes to the fabrication process. Specifically, we find that when the TIPS-pentacene layer is added on top of the source/drain electrodes, resulting in devices with embedded source/drain electrodes [embedded electrode TFTs (EETFTs)], the devices exhibit an enhancement-mode behavior with an average mobility (μ) of 6.4 cm2 V–1 s–1, a source–drain current ratio (Ion/Ioff) of around 105, and a near-zero threshold voltage (VTH). When on the other hand the TIPS-pentacene layer is added before the source–drain electrodes, i.e., in top-contact electrode TFTs (TCETFTs), a very clear depletion mode behavior is observed with an average μ of 6.3 cm2 V–1 s–1, an Ion/Ioff ratio of over 105, and a VTH of −80.3 V. Furthermore, a logic inverter is fabricated combining the enhancement (EETFTs)- and depletion (TCETFTs)-mode transistors, which shows a potential for the construction of organic–inorganic hybrid electronics and circuits.