People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahmadi, Morteza
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021Micro-mechanical damage analysis of Al-Tic particulate reinforced composites by Peridynamic theory
- 2021Damage behavior analysis of Al/TiC particulate composite by acoustic emission monitoring and peridynamic modelingcitations
- 2021High-Voltage, High-Current Electrical Switching Discharge Synthesis of ZnO Nanorodscitations
- 2021Cu2ZnSnS4 thin film as a counter electrode in zinc stannate-based dye-sensitized solar cellscitations
Places of action
Organizations | Location | People |
---|
article
High-Voltage, High-Current Electrical Switching Discharge Synthesis of ZnO Nanorods
Abstract
<p>A novel method of oxide semiconductor nanoparticle synthesis is proposed based on high-voltage, high-current electrical switching discharge (HVHC-ESD). Through a subsecond discharge in the HVHC-ESD method, we successfully synthesized zinc oxide (ZnO) nanorods. Crystallography and optical and electrical analyses approve the high crystal-quality and outstanding optoelectronic characteristics of our synthesized ZnO. The HVHC-ESD method enables the synthesis of ZnO nanorods with ultraviolet (UV) and visible emissions. To demonstrate the effectiveness of our prepared materials, we also fabricated two UV photodetectors based on the ZnO nanorods synthesized using the subsecond HVHC-ESD method. The UV-photodetector test under dark and UV light irradiation also had a promising result with a linear ohmic current-voltage output. In addition to the HVHC-ESD method’s excellent tunability for ZnO properties, this method enables the rapid synthesis of ZnO nanorods in open air and water. The results demonstrate the preparation, highlight the synthesis of fine hexagonal-shaped nanorods under a second with controlled oxygen vacancies, and point defects for a wide range of applications in less than a second.</p>