People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Taresco, Vincenzo
University of Nottingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024A facile one step route that introduces functionality to polymer powders for laser sinteringcitations
- 2022Antimicrobial ‘inks’ for 3D printing: block copolymer-silver nanoparticle composites synthesised using supercritical CO2citations
- 2021Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplasticscitations
- 2021Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomerscitations
- 2021Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomerscitations
- 2020Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumourscitations
- 2020Antimicrobial Hyperbranched Polymer–Usnic Acid Complexes through a Combined ROP‐RAFT Strategycitations
- 2020Effects of polymer 3D architecture, size, and chemistry on biological transport and drug delivery in vitro and in orthotopic triple negative breast cancer modelscitations
- 2020Starch/Poly(glycerol-adipate) Nanocomposites: A Novel Oral Drug Delivery Devicecitations
- 2020Low-temperature and purification-free stereocontrolled ring-opening polymerisation of lactide in supercritical carbon dioxidecitations
- 2019Versatile, Highly Controlled Synthesis of Hybrid (Meth)acrylate–Polyester–Carbonates and their Exploitation in Tandem Post-Polymerization–Functionalizationcitations
- 2018Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug deliverycitations
- 2015Self-assembly of catecholic moiety-containing cationic random acrylic copolymerscitations
Places of action
Organizations | Location | People |
---|
article
Bespoke 3D-Printed Polydrug Implants Created via Microstructural Control of Oligomers
Abstract
<p>Controlling the microstructure of materials by means of phase separation is a versatile tool for optimizing material properties. Phase separation has been exploited to fabricate intricate microstructures in many fields including cell biology, tissue engineering, optics, and electronics. The aim of this study was to use phase separation to tailor the spatial location of drugs and thereby generate release profiles of drug payload over periods ranging from 1 week to months by exploiting different mechanisms: polymer degradation, polymer diluent dissolution, and control of microstructure. To achieve this, we used drop-on-demand inkjet three-dimensional (3D) printing. We predicted the microstructure resulting from phase separation using high-throughput screening combined with a model based on the Flory-Huggins interaction parameter and were able to show that drug release from 3D-printed objects can be predicted from observations based on single drops of mixtures. We demonstrated for the first time that inkjet 3D printing yields controllable phase separation using picoliter droplets of blended photoreactive oligomers/monomers. This new understanding gives us hierarchical compositional control, from droplet to device, allowing release to be "dialled up"without manipulation of device geometry. We exemplify this approach by fabricating a biodegradable, long-term, multiactive drug delivery subdermal implant ("polyimplant") for combination therapy and personalized treatment of coronary heart disease. This is an important advance for implants that need to be delivered by cannula, where the shape is highly constrained and thus the usual geometrical freedoms associated with 3D printing cannot be easily exploited, which brings a hitherto unseen level of understanding to emergent material properties of 3D printing.</p>