People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhao-Karger, Zhirong
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Calcium Metal Batteries - Similarities and Differences to their Magnesium and Lithium Counterparts
- 2024Recent developments and future prospects of magnesium–sulfur batteriescitations
- 2023Addressing the Sluggish Kinetics of Sulfur Redox for High‐Energy Mg–S Batteriescitations
- 2023A π‐Conjugated Porphyrin Complex as Cathode Material Allows Fast and Stable Energy Storage in Calcium Batteries
- 2022Dual Role of Mo 6 S 8 in Polysulfide Conversion and Shuttle for Mg–S Batteriescitations
- 2022Operando UV/vis Spectroscopy Providing Insights into the Sulfur and Polysulfide Dissolution in Magnesium-Sulfur Batteriescitations
- 2021Polyoxometalate Modified Separator for Performance Enhancement of Magnesium–Sulfur Batteriescitations
- 2021Surface Engineering of a Mg Electrode via a New Additive to Reduce Overpotentialcitations
- 2020Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteriescitations
- 2020Multi-electron reactions enabled by anion-participated redox chemistry for high-energy multivalent rechargeable batteriescitations
- 2014Carbon materials for the positive electrode in all-vanadium redox flow batteriescitations
- 2014Gold Catalysis: AuCl-induced Polymerization of Styrene and n-Butylvinylethercitations
- 2014Fabrication of porous rhodium nanotube catalysts by electroless platingcitations
- 2012Fabrication of porous rhodium nanotube catalysts by electroless platingcitations
Places of action
Organizations | Location | People |
---|
article
Surface Engineering of a Mg Electrode via a New Additive to Reduce Overpotential
Abstract
In nonaqueous Mg batteries, inactive adsorbed species and the passivation layer formed from the reactive Mg with impurities in the electrolyte seriously affect the Mg metal/electrolyte interface. These adlayers can impede the passage of Mg$^{2+}$ ions, leading to a high Mg plating/stripping overpotential. Herein, we report the properties of a new additive, bismuth triflate (Bi(OTf)$_{3}$), for synthesizing a chlorine-free Mg electrolyte to enhance Mg plating/stripping from initial cycles. The beneficial effect of Bi(OTf)$_{3}$ can be ascribed to Bi/Mg$_{3}$Bi$_{2}$ formed in situ on the Mg metal surface, which increases the charge transfer during the on–off transition by reducing the adsorption of inactive species on the Mg surface and enhancing the resistance of the reactive surface to passivation. This simple method provides a new avenue to improve the compatibility between the Cl-free Mg electrolyte and the Mg metal anode.