Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vogtmann, Julia

  • Google
  • 1
  • 6
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Electrochemical Surface Structuring for Strong SMA Wire–Polymer Interface Adhesion17citations

Places of action

Chart of shared publication
Gurka, Martin
1 / 4 shared
Zeller-Plumhoff, Berit
1 / 20 shared
Adelung, Rainer
1 / 120 shared
Carstensen, Jürgen
1 / 8 shared
Gapeeva, Anna
1 / 8 shared
Beckmann, Felix
1 / 28 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Gurka, Martin
  • Zeller-Plumhoff, Berit
  • Adelung, Rainer
  • Carstensen, Jürgen
  • Gapeeva, Anna
  • Beckmann, Felix
OrganizationsLocationPeople

article

Electrochemical Surface Structuring for Strong SMA Wire–Polymer Interface Adhesion

  • Vogtmann, Julia
  • Gurka, Martin
  • Zeller-Plumhoff, Berit
  • Adelung, Rainer
  • Carstensen, Jürgen
  • Gapeeva, Anna
  • Beckmann, Felix
Abstract

Active hybrid composites represent a novel class of smart materials used to design morphing surfaces, opening up new applications in the aircraft and automotive industries. The bending of the active hybrid composite is induced by the contraction of electrically activated shape memory alloy (SMA) wires, which are placed with an offset to the neutral axis of the composite. Therefore, the adhesion strength between the SMA wire and the surrounding polymer matrix is crucial to the load transfer and the functionality of the composite. Thus, the interface adhesion strength is of great importance for the performance and the actuation potential of active hybrid composites. In this work, the surface of a commercially available one-way effect NiTi SMA wire with a diameter of 1 mm was structured by selective electrochemical etching that preferably starts at defect sites, leaving the most thermodynamically stable surfaces of the wire intact. The created etch pits lead to an increase in the surface area of the wire and a mechanical interlocking with the polymer, resulting in a combination of adhesive and cohesive failure modes after a pull-out test. Consequently, the force of the first failure determined by an optical stress measurement was increased by more than 3 times when compared to the as-delivered SMA wire. The actuation characterization test showed that approximately the same work capacity could be retrieved from structured SMA wires. Moreover, structured SMA wires exhibited the same shape of the stress–strain curve as the as-delivered SMA wire, and the mechanical performance was not influenced by the structuring process. The austenite start As and austenite finish Af transformation temperatures were also not found to be affected by the structuring process. The formation of etching pits with different geometries and densities was discussed with regard to the kinetics of oxide formation and dissolution.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • strength
  • stress-strain curve
  • composite
  • etching
  • defect
  • wire