People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pich, Andrij
Maastricht University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Enhancing Adhesion of Fibrin-Based Hydrogel to Polythioether Polymer Surfacescitations
- 2023Novel Pectin Binder for Satelliting Carbides to H13 Tool Steel for PBF-LB Processingcitations
- 2022Characterization of transient rheological behavior of soft materials using ferrofluid dropletscitations
- 2022Generation of local diffusioosmotic flow by light responsive microgelscitations
- 2021Post-Modification of Biobased Pyrazines and Their Polyesterscitations
- 2020Stimuli-Responsive Zwitterionic Core-Shell Microgels for Antifouling Surface Coatingscitations
- 2020Amphiphilic PVCL/TBCHA microgelscitations
- 2020Ranking of fiber composites by estimation of types and mechanisms of their fracturecitations
- 2020Polyphosphazene-Tannic Acid Colloids as Building Blocks for Bio-Based Flame-Retardant Coatingscitations
- 2020Mononuclear zinc(II) Schiff base complexes as catalysts for the ring-opening polymerization of lactidecitations
- 2020Dual-Temperature-Responsive Microgels from a Zwitterionic Functional Graft Copolymer with Superior Protein Repelling Propertycitations
- 2019Heterolepic β ‐Ketoiminate Zinc Phenoxide Complexes as Efficient Catalysts for the Ring Opening Polymerization of Lactidecitations
- 2019Selenium-Modified Microgels as Bio-Inspired Oxidation Catalystscitations
- 2019Heterolepic β-Ketoiminate Zinc Phenoxide Complexes as Efficient Catalysts for the Ring Opening Polymerization of Lactidecitations
- 2019Heterolepic β‐Ketoiminate Zinc Phenoxide Complexes as Efficient Catalysts for the Ring Opening Polymerization of Lactide
- 2019Tuning Channel Architecture of Interdigitated Organic Electrochemical Transistors for Recording the Action Potentials of Electrogenic Cellscitations
- 2017Internal structure and phase transition behavior of stimuli-responsive microgels in PEG meltscitations
- 2014Water dispersible electrically conductive poly(3,4- ethylenedioxythiophene) nanospindles by liquid crystalline template assisted polymerizationcitations
- 2013Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive processcitations
Places of action
Organizations | Location | People |
---|
article
Stimuli-Responsive Zwitterionic Core-Shell Microgels for Antifouling Surface Coatings
Abstract
<p>Fouling on filtration membranes is induced by the nonspecific interactions between the membrane surface and the foulants, and effectively hinders their efficient use in various applications. Here, we established a facile method for the coating of membrane surface with a dual stimuli-responsive antifouling microgel system enriched with a high polyzwitterion content. Different poly(sulfobetaine) (PSB) zwitterionic polymers with defined molecular weights and narrow dispersities were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and integrated onto poly(N-vinylcaprolactam) (PVCL) microgels via a controlled dosage of a cross-linker, adapting a precipitation polymerization technique to obtain a core-shell microstructure. Increasing the PSB macro-RAFT concentration resulted in a shift of both upper critical solution temperature and lower critical solution temperature toward higher temperatures. Cryogenic transmission electron microscopy at different temperatures suggested the formation of a core-shell morphology with a PVCL-rich core and a PSB-rich shell. On the other hand, the significant variations of different characteristic proton signals and reversible phase transitions of the microgel constituents were confirmed by temperature-dependent 1H NMR studies. Utilizing a quartz crystal microbalance with dissipation monitoring, we have been able to observe and quantitatively describe the antipolyelectrolyte behavior of the zwitterionic microgels. The oscillation frequency of the sensor proved to change reversibly according to the variations of the NaCl concentration, showing, in fact, the effect of the interaction between the salt and the opposite charges present in the microgel deposited on the sensor. Poly(ethersulfone) membranes, chosen as the model surface, when functionalized with zwitterionic microgel coatings, displayed protein-repelling property, stimulated by different transition temperatures, and showed even better performances at increasing NaCl concentration. These kinds of stimuli-responsive zwitterionic microgel can act as temperature-triggered drug delivery systems and as potential coating materials to prevent bioadhesion and biofouling as well.</p>