People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hultmark, Sandra
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Impact of oxidation-induced ordering on the electrical and mechanical properties of a polythiophene co-processed with bistriflimidic acidcitations
- 2023Hexanary blends: a strategy towards thermally stable organic photovoltaicscitations
- 2022Tuning of the elastic modulus of a soft polythiophene through molecular dopingcitations
- 2022Correlating Acceptor Structure and Blend Nanostructure with the Photostability of Nonfullerene Organic Solar Cellscitations
- 2020Sequential Doping of Ladder-Type Conjugated Polymers for Thermally Stable n-Type Organic Conductorscitations
- 2020Sequential Doping of Ladder-Type Conjugated Polymers for Thermally Stable n-Type Organic Conductorscitations
Places of action
Organizations | Location | People |
---|
article
Sequential Doping of Ladder-Type Conjugated Polymers for Thermally Stable n-Type Organic Conductors
Abstract
<p>Doping of organic semiconductors is a powerful tool to optimize the performance of various organic (opto)electronic and bioelectronic devices. Despite recent advances, the low thermal stability of the electronic properties of doped polymers still represents a significant obstacle to implementing these materials into practical applications. Hence, the development of conducting doped polymers with excellent long-term stability at elevated temperatures is highly desirable. Here, we report on the sequential doping of the ladder-type polymer poly(benzimidazobenzophenanthroline) (BBL) with a benzimidazole-based dopant (i.e., N-DMBI). By combining electrical, UV-vis/infrared, X-ray diffraction, and electron paramagnetic resonance measurements, we quantitatively characterized the conductivity, Seebeck coefficient, spin density, and microstructure of the sequentially doped polymer films as a function of the thermal annealing temperature. Importantly, we observed that the electrical conductivity of N-DMBI-doped BBL remains unchanged even after 20 h of heating at 190 °C. This finding is remarkable and of particular interest for organic thermoelectrics.</p>