People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Han, Yisong
University of Warwick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Block copolymer synthesis in ionic liquid via polymerisation-induced self-assembly: A convenient route to gel electrolytescitations
- 2024Electrodeposition of 2D layered tungsten diselenide thin films using a single source precursorcitations
- 2022Mesoporous silica films as hard templates for electrodeposition of nanostructured goldcitations
- 2022Vertical and Lateral Electrodeposition of 2D Material Heterostructures
- 2022Influence of extrusion parameters on filled polyphenylsulfone tufting yarns on open-hole tensile strengthcitations
- 2021Electrodeposited WS 2 monolayers on patterned graphenecitations
- 2021Lateral growth of MoS2 2D material semiconductors over an insulator via electrodepositioncitations
- 2021Lateral growth of MoS 2 2D material semiconductors over an insulator via electrodepositioncitations
- 2020Large-area electrodeposition of few-layer MoS2 on graphene for 2D material heterostructurescitations
- 2020Data for Atomic level termination for passivation and functionalisation of silicon surfaces
- 2020Large-area electrodeposition of few-layer MoS 2 on graphene for 2D material heterostructurescitations
- 2020Atomic level termination for passivation and functionalisation of silicon surfacescitations
- 2019Generation of maghemite nanocrystals from iron–sulfur centrescitations
- 2016Structural and optical properties of (112̅2) InGaN quantum wells compared to (0001) and (112̅0)
- 2016Self-assembled Multilayers of Silica Nanospheres for Defect Reduction in Non- and Semipolar Gallium Nitride Epitaxial Layers.
- 2016Toward defect-free semi-polar GaN templates on pre-structured sapphirecitations
- 2015Low defect large area semi-polar (11[Formula: see text]2) GaN grown on patterned (113) silicon.
Places of action
Organizations | Location | People |
---|
article
Large-area electrodeposition of few-layer MoS2 on graphene for 2D material heterostructures
Abstract
<p>Heterostructures involving two-dimensional (2D) transition metal dichalcogenides and other materials such as graphene have a strong potential to be the fundamental building block of many electronic and optoelectronic applications. The integration and scalable fabrication of such heterostructures are of the essence in unleashing the potential of these materials in new technologies. For the first time, we demonstrate the growth of few-layer MoS<sub>2</sub> films on graphene via nonaqueous electrodeposition. Through methods such as scanning and transmission electron microscopy, atomic force microscopy, Raman spectroscopy, energy- and wavelength-dispersive X-ray spectroscopies, and X-ray photoelectron spectroscopy, we show that this deposition method can produce large-area MoS<sub>2</sub> films with high quality and uniformity over graphene. We reveal the potential of these heterostructures by measuring the photoinduced current through the film. These results pave the way toward developing the electrodeposition method for the large-scale growth of heterostructures consisting of varying 2D materials for many applications.</p>