People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Noori, Yasir Jamal
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Temperature effects on the electrodeposition of semiconductors from a weakly coordinating solventcitations
- 2022Vertical and Lateral Electrodeposition of 2D Material Heterostructures
- 20222D material based optoelectronics by electroplating
- 2021Tungsten disulfide thin films via electrodeposition from a single source precursorcitations
- 2021Lateral growth of MoS2 2D material semiconductors over an insulator via electrodepositioncitations
- 2021Towards GaAs thin-film tracking detectorscitations
- 2020Large-area electrodeposition of few-layer MoS2 on graphene for 2D material heterostructurescitations
- 2020Chloroantimonate electrochemistry in dichloromethanecitations
- 2020Large-Area Electrodeposition of Ultra-Thin MoS2 on Graphene for 2D Material Heterostructure Photodetectors
- 2020Electrodeposition of MoS2 from dichloromethanecitations
- 2018Towards a 3D GeSbTe phase change memory with integrated selector by non-aqueous electrodepositioncitations
Places of action
Organizations | Location | People |
---|
article
Large-area electrodeposition of few-layer MoS2 on graphene for 2D material heterostructures
Abstract
<p>Heterostructures involving two-dimensional (2D) transition metal dichalcogenides and other materials such as graphene have a strong potential to be the fundamental building block of many electronic and optoelectronic applications. The integration and scalable fabrication of such heterostructures are of the essence in unleashing the potential of these materials in new technologies. For the first time, we demonstrate the growth of few-layer MoS<sub>2</sub> films on graphene via nonaqueous electrodeposition. Through methods such as scanning and transmission electron microscopy, atomic force microscopy, Raman spectroscopy, energy- and wavelength-dispersive X-ray spectroscopies, and X-ray photoelectron spectroscopy, we show that this deposition method can produce large-area MoS<sub>2</sub> films with high quality and uniformity over graphene. We reveal the potential of these heterostructures by measuring the photoinduced current through the film. These results pave the way toward developing the electrodeposition method for the large-scale growth of heterostructures consisting of varying 2D materials for many applications.</p>