People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Altomare, Marco
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2025Pulsed‐Current Operation Enhances H2O2 Production on a Boron‐Doped Diamond Mesh Anode in a Zero‐Gap PEM Electrolyzer
- 2024Dewetting of Pt Nanoparticles Boosts Electrocatalytic Hydrogen Evolution Due to Electronic Metal‐Support Interactioncitations
- 2023Metastable Ni(I)-TiO2–x Photocatalysts: Self-Amplifying H2 Evolution from Plain Water without Noble Metal Co-Catalyst and Sacrificial Agentcitations
- 2022Comparison of the sputtered TiO2 anatase and rutile thin films as electron transporting layers in perovskite solar cellscitations
- 2022Amorphous NiCu Thin Films Sputtered on TiO2 Nanotube Arrays: A Noble‐Metal Free Photocatalyst for Hydrogen Evolutioncitations
- 2021Comparison of the sputtered TiO2 anatase and rutile thin films as electron transporting layers in perovskite solar cellscitations
- 2021Reduced grey brookite for noble metal free photocatalytic H2 evolutioncitations
- 2021Hydrogenated anatase TiO2 single crystals: defects formation and structural changes as microscopic origin of co-catalyst free photocatalytic H2 evolution activitycitations
- 2020Dewetting of PtCu Nanoalloys on TiO$_{2}$ Nanocavities Provides a Synergistic Photocatalytic Enhancement for Efficient H$_{2}$ Evolutioncitations
- 2020Dewetting of PtCu Nanoalloys on TiO2Nanocavities Provides a Synergistic Photocatalytic Enhancement for Efficient H2Evolutioncitations
- 2020A Dewetted-Dealloyed Nanoporous Pt Co-Catalyst Formed on TiO2 Nanotube Arrays Leads to Strongly Enhanced Photocatalytic H-2 Productioncitations
- 2020A Dewetted-Dealloyed Nanoporous Pt Co-Catalyst Formed on TiO2 Nanotube Arrays Leads to Strongly Enhanced Photocatalytic H2 Productioncitations
- 2020Photo-Electrochemical Solar-to-Fuel Energy Conversion by Hematite-Based Photo-Anodes-The Role of 1D Nanostructuringcitations
- 2019Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Productioncitations
Places of action
Organizations | Location | People |
---|
article
Dewetting of PtCu Nanoalloys on TiO2Nanocavities Provides a Synergistic Photocatalytic Enhancement for Efficient H2Evolution
Abstract
<p>We investigate the co-catalytic activity of PtCu alloy nanoparticles for photocatalytic H2 evolution from methanol-water solutions. To produce the photocatalysts, a few-nanometer-thick Pt-Cu bilayers are deposited on anodic TiO2 nanocavity arrays and converted by solid-state dewetting via a suitable thermal treatment into bimetallic PtCu nanoparticles. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results prove the formation of PtCu nanoalloys that carry a shell of surface oxides. X-ray absorption near-edge structure (XANES) data support Pt and Cu alloying and indicate the presence of lattice disorder in the PtCu nanoparticles. The PtCu co-catalyst on TiO2 shows a synergistic activity enhancement and a significantly higher activity toward photocatalytic H2 evolution than Pt- or Cu-TiO2. We propose the enhanced activity to be due to Pt-Cu electronic interactions, where Cu increases the electron density on Pt, favoring a more efficient electron transfer for H2 evolution. In addition, Cu can further promote the photoactivity by providing additional surface catalytic sites for hydrogen recombination. Remarkably, when increasing the methanol concentration up to 50 vol % in the reaction phase, we observe for PtCu-TiO2 a steeper activity increase compared to Pt-TiO2. A further increase in methanol concentration (up to 80 vol %) causes for Pt-TiO2 a clear activity decay, while PtCu-TiO2 still maintains a high level of activity. This suggests improved robustness of PtCu nanoalloys against poisoning from methanol oxidation products such as CO.</p>