Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fernández, Eduardo

  • Google
  • 4
  • 27
  • 100

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Fiber-Reinforced Composite Materials4citations
  • 2020Design of Ionic-Liquid-Based Hybrid Polymer Materials with a Magnetoactive and Electroactive Multifunctional Response19citations
  • 2020Overview on thermoactive materials, simulations and applications9citations
  • 2019Biological, mechanical and adhesive properties of universal adhesives containing zinc and copper nanoparticles68citations

Places of action

Chart of shared publication
Salas, A.
1 / 2 shared
Pincheira, G.
1 / 4 shared
Medina, C.
1 / 17 shared
Meléndrez, M.
1 / 2 shared
Tuninetti, V.
1 / 4 shared
Valdivia, I.
1 / 2 shared
Flores, P.
1 / 8 shared
Lanceros-Méndez, Senentxu
2 / 387 shared
Correia, Daniela M.
1 / 41 shared
Esperança, José Manuel Silva Simões
1 / 27 shared
Tariq, Mohammad
1 / 10 shared
Fernandes, Liliana C.
1 / 13 shared
Ferreira, Nelson
1 / 10 shared
Fernandes, Liliana
1 / 7 shared
Antunes, Paulo
1 / 13 shared
Martins, Pedro
1 / 19 shared
Hernández-Moya, Nadia
1 / 1 shared
Dávila-Sánchez, Andrés
1 / 1 shared
Martin, Javier
1 / 2 shared
Bermudez, Jorge
1 / 1 shared
Farago, Paulo V.
1 / 1 shared
Buvinic, Sonja
1 / 1 shared
Reis, Alessandra
1 / 4 shared
Loguercio, Alessandro D.
1 / 4 shared
Méndez-Bauer, Luján
1 / 1 shared
Alegría-Acevedo, Luisa F.
1 / 1 shared
Gutiérrez, Mario F.
1 / 1 shared
Chart of publication period
2023
2020
2019

Co-Authors (by relevance)

  • Salas, A.
  • Pincheira, G.
  • Medina, C.
  • Meléndrez, M.
  • Tuninetti, V.
  • Valdivia, I.
  • Flores, P.
  • Lanceros-Méndez, Senentxu
  • Correia, Daniela M.
  • Esperança, José Manuel Silva Simões
  • Tariq, Mohammad
  • Fernandes, Liliana C.
  • Ferreira, Nelson
  • Fernandes, Liliana
  • Antunes, Paulo
  • Martins, Pedro
  • Hernández-Moya, Nadia
  • Dávila-Sánchez, Andrés
  • Martin, Javier
  • Bermudez, Jorge
  • Farago, Paulo V.
  • Buvinic, Sonja
  • Reis, Alessandra
  • Loguercio, Alessandro D.
  • Méndez-Bauer, Luján
  • Alegría-Acevedo, Luisa F.
  • Gutiérrez, Mario F.
OrganizationsLocationPeople

article

Design of Ionic-Liquid-Based Hybrid Polymer Materials with a Magnetoactive and Electroactive Multifunctional Response

  • Lanceros-Méndez, Senentxu
  • Correia, Daniela M.
  • Esperança, José Manuel Silva Simões
  • Fernández, Eduardo
  • Tariq, Mohammad
  • Fernandes, Liliana C.
Abstract

<p>Multifunctional materials with sensor and actuator capabilities play an increasing role in modern technology. In this scope, hybrid materials with magnetic sensing and an electromechanical actuator response based on magnetic ionic liquids (MILs) and the polymer poly(vinylidene fluoride) (PVDF) have been developed. MILs comprising different cation alkyl chain lengths [Cnmim]+ and sharing the same anion [FeCl4]- were incorporated at 20 wt % into the PVDF matrix and the morphological, physical, chemical, and functional properties of the materials were evaluated. An increasing IL alkyl chain length leads to the formation of a porous structure, together with an increase in the electroactive PVDF β-phase content of the polymer and a decrease in the crystallinity degree and thermal stability. The magnetic susceptibility of the [Cnmim][FeCl4]/PVDF films reveals a paramagnetic behavior. The multifunctional response is characterized by a magnetoionic response that decreases with increasing IL alkyl chain length, the highest magnetoionic coefficient (1.06 ± 0.015 V cm-1 Oe-1) being observed for [C2mim][FeCl4]/PVDF. The electromechanical actuator response is characterized by a highest displacement of 1.1 mm for the [C4mim][FeCl4]/PVDF film by applying a voltage of 4 V at a frequency of 100 mHz. Further, their solution processing makes these multiresponsive materials compatible with additive manufacturing technologies.</p>

Topics
  • porous
  • impedance spectroscopy
  • polymer
  • phase
  • susceptibility
  • additive manufacturing
  • crystallinity
  • solution processing