Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rolison, Debra

  • Google
  • 14
  • 45
  • 331

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2021Designing Oxide Aerogels with Enhanced Sorptive and Degradative Activity for Acute Chemical Threats12citations
  • 2020Mesoporous Copper Nanoparticle/TiO2 Aerogels for Room-Temperature Hydrolytic Decomposition of the Chemical Warfare Simulant Dimethyl Methylphosphonate28citations
  • 2020Electronic Metal–Support Interactions in the Activation of CO Oxidation over a Cu/TiO2 Aerogel Catalyst26citations
  • 2020Stabilization of reduced copper on ceria aerogels for CO oxidation17citations
  • 2020Power of Aerogel Platforms to Explore Mesoscale Transport in Catalysis.14citations
  • 2019(Keynote) Effect of Architecturally Expressed Electrodes and Catalysts on Energy Storage/Conversion in Aqueous Electrolytescitations
  • 2018Trapping a Ru2O3 Corundum-like Structure at Ultrathin, Disordered RuO2 Nanoskins Expressed in 3D8citations
  • 2017Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO2 nanoarchitectures90citations
  • 2017Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis37citations
  • 2017Competitive Oxygen Evolution in Acid Electrolyte Catalyzed at Technologically Relevant Electrodes Painted with Nanoscale RuO253citations
  • 2017Electroless Deposition of Disordered RuO<sub>2</sub> Nanoskins: An Example from the Fourth Quadrant of Electronic Materialscitations
  • 2016Aerogel Architectures Boost Oxygen‐Evolution Performance of NiFe2Ox Spinels to Activity Levels Commensurate with Nickel‐Rich Oxides21citations
  • 2015Routes to 3D conformal solid-state dielectric polymers: electrodeposition versus initiated chemical vapor deposition20citations
  • 2008Self-Limiting Electropolymerization of o-Aminophenol on Ultraporous Carbon Nanoarchitectures for Electrochemical Capacitor Applications5citations

Places of action

Chart of shared publication
Novak, Travis G.
1 / 3 shared
Long, Jeffrey W.
3 / 4 shared
Desario, Paul
12 / 25 shared
Pennington, Ashley M.
2 / 2 shared
Balboa, Alex
1 / 2 shared
Delia, Daniel
1 / 1 shared
Pietron, Jeremy
6 / 11 shared
Pitman, Catherine
2 / 2 shared
Maynes, Andrew
1 / 1 shared
Morris, John
1 / 1 shared
Barlow, Daniel
1 / 1 shared
Esparraguera, Liam F.
1 / 1 shared
Pennington, Ashley
1 / 2 shared
Brintlinger, Todd
4 / 10 shared
Owrutsky, Jeff
2 / 2 shared
Yesinowski, James P.
1 / 1 shared
Glaser, Evan R.
1 / 1 shared
Pitman, Catherine L.
1 / 3 shared
Dunkelberger, Adam D.
2 / 2 shared
Melinger, Joseph S.
2 / 2 shared
Johannes, Michelle
1 / 1 shared
Miller, Joel
1 / 1 shared
Long, Jeffrey
3 / 4 shared
Sassin, Megan B.
3 / 4 shared
Parker, Joseph F.
3 / 4 shared
Ko, Jesse
1 / 1 shared
Chervin, Christopher N.
5 / 7 shared
Hopkins, Brandon J.
1 / 1 shared
Mansour, Azzam N.
1 / 2 shared
Donakowski, Martin D.
2 / 3 shared
Pala, Irina R.
2 / 3 shared
Mcentee, Monica
1 / 1 shared
Baturina, Olga A.
2 / 2 shared
Stroud, Rhonda M.
1 / 3 shared
Nelson, Eric S.
2 / 3 shared
Osofsky, Michael S.
1 / 1 shared
Owrutsky, Jeffrey C.
1 / 2 shared
Krowne, Clifford M.
1 / 1 shared
Bussmann, Konrad M.
1 / 1 shared
Charipar, Kristin M.
1 / 1 shared
Miller, Bryan W.
1 / 1 shared
Wallace, Jean Marie
1 / 1 shared
Fischer, Anne E.
1 / 1 shared
Saunders, Matthew P.
1 / 1 shared
Lytle, Justin C.
1 / 1 shared
Chart of publication period
2021
2020
2019
2018
2017
2016
2015
2008

Co-Authors (by relevance)

  • Novak, Travis G.
  • Long, Jeffrey W.
  • Desario, Paul
  • Pennington, Ashley M.
  • Balboa, Alex
  • Delia, Daniel
  • Pietron, Jeremy
  • Pitman, Catherine
  • Maynes, Andrew
  • Morris, John
  • Barlow, Daniel
  • Esparraguera, Liam F.
  • Pennington, Ashley
  • Brintlinger, Todd
  • Owrutsky, Jeff
  • Yesinowski, James P.
  • Glaser, Evan R.
  • Pitman, Catherine L.
  • Dunkelberger, Adam D.
  • Melinger, Joseph S.
  • Johannes, Michelle
  • Miller, Joel
  • Long, Jeffrey
  • Sassin, Megan B.
  • Parker, Joseph F.
  • Ko, Jesse
  • Chervin, Christopher N.
  • Hopkins, Brandon J.
  • Mansour, Azzam N.
  • Donakowski, Martin D.
  • Pala, Irina R.
  • Mcentee, Monica
  • Baturina, Olga A.
  • Stroud, Rhonda M.
  • Nelson, Eric S.
  • Osofsky, Michael S.
  • Owrutsky, Jeffrey C.
  • Krowne, Clifford M.
  • Bussmann, Konrad M.
  • Charipar, Kristin M.
  • Miller, Bryan W.
  • Wallace, Jean Marie
  • Fischer, Anne E.
  • Saunders, Matthew P.
  • Lytle, Justin C.
OrganizationsLocationPeople

article

Power of Aerogel Platforms to Explore Mesoscale Transport in Catalysis.

  • Owrutsky, Jeff
  • Yesinowski, James P.
  • Glaser, Evan R.
  • Pitman, Catherine L.
  • Pietron, Jeremy
  • Dunkelberger, Adam D.
  • Desario, Paul
  • Brintlinger, Todd
  • Rolison, Debra
  • Melinger, Joseph S.
  • Johannes, Michelle
  • Miller, Joel
Abstract

We describe the opportunity to deploy aerogels-an ultraporous nanoarchitecture with co-continuous networks of meso/macropores and covalently bonded nanoparticulates-as a platform to address the nature of the electronic, ionic, and mass transport that underlies catalytic activity. As a test case, we fabricated Au||TiO2 junctions in composite guest-host aerogels in which ∼5 nm Au nanoparticles are incorporated either directly into the anatase TiO2 network (Au "in" TiO2, AuIN-TiO2 aerogel) or deposited onto preformed TiO2 aerogel (Au "on" TiO2, AuON/TiO2 aerogel). The metal-meets-oxide nanoscale interphase as visualized by electron tomography feature extended three-dimensional (3D) interfaces, but AuIN-TiO2 aerogels impose a greater degree of Au contact with TiO2 particles than does the AuON/TiO2 form. Both aerogel variants enable transport of electrons over micrometer-scale distances across the TiO2 network to Au||TiO2 junctions, as evidenced by electron paramagnetic resonance (EPR) and ultrafast visible pump-IR probe time-resolved absorption spectroscopy. The siting of gold nanoparticles in the TiO2 network more effectively disperses trapped electrons. Density functional theory (DFT) calculations find that increased physical contact between Au and TiO2, induced by oxygen vacancies, produces increased hybridization of midgap states and quenches unpaired trapped electrons. We assign the apparent differences in electron-transport capabilities to a combination of the relatively better-wired Au||TiO2 junctions in AuIN-TiO2 aerogels, which have a greater capacity to dilute accumulated charge over a larger interfacial surface area, with an enhanced ability to discharge the accumulated electrons via catalytic reduction of adsorbed O2 to O2- at the interface. Solid-state 1H nuclear magnetic resonance experiments show that proton spin-lattice relaxation times and possibly proton diffusion are strongly coupled to Au||TiO2 interfacial design, likely through spin coupling of protons to unpaired electrons trapped at the TiO2 network. Taken together, our results show that Au||TiO2 interfacial design strongly impacts charge carrier (electron and proton) transport over mesoscale distances in catalytic aerogel architectures.

Topics
  • nanoparticle
  • density
  • surface
  • theory
  • experiment
  • Oxygen
  • tomography
  • gold
  • composite
  • density functional theory
  • electron spin resonance spectroscopy
  • interfacial surface area