People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mäkelä, Jyrki Mikael
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Silver nanoparticle coatings with adjustable extinction spectra produced with liquid flame spray, and their role in photocatalytic enhancement of TiO2
- 2023Synthesis of calcium phosphate nanostructured particles by liquid flame spray and investigation of their crystalline phase combinations
- 2023The effect of metal dissolution on carbon production by high-temperature molten salt electrolysiscitations
- 2021Crystallographic phase formation of iron oxide particles produced from iron nitrate by liquid flame spray with a dual oxygen flowcitations
- 2020Protective stainless steel micropillars for enhanced photocatalytic activity of TiO2 nanoparticles during wearcitations
- 2020Silver-Decorated TiO2 Inverse Opal Structure for Visible Light-Induced Photocatalytic Degradation of Organic Pollutants and Hydrogen Evolutioncitations
- 2019Characterization of flame coated nanoparticle surfaces with antibacterial properties and the heat-induced embedding in thermoplastic-coated papercitations
- 2018Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanizationcitations
- 2016Wetting hysteresis induced by temperature changescitations
- 2016Surface-Enhanced Impulsive Coherent Vibrational Spectroscopycitations
- 2015Long-term corrosion protection by a thin nano-composite coatingcitations
- 2015Coating of Silica and Titania Aerosol Nanoparticles by Silver Vapor Condensationcitations
- 2015Roll-to-roll coating by liquid flame spray nanoparticle depositioncitations
- 2014Second-harmonic response of multilayer nanocomposites of silver-decorated nanoparticles and silicacitations
- 2013Ordered multilayer silica-metal nanocomposites for second-order nonlinear opticscitations
- 2012Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materialscitations
Places of action
Organizations | Location | People |
---|
article
Silver-Decorated TiO2 Inverse Opal Structure for Visible Light-Induced Photocatalytic Degradation of Organic Pollutants and Hydrogen Evolution
Abstract
<p>TiO2 inverse opal (TIO) structures were prepared by the conventional wet chemical method, resulting in well-formed structures for photocatalytic activity. The obtained structures were functionalized with liquid flame spray-deposited silver nanoparticles (AgNPs). The nanocomposites of TIO and AgNPs were extensively characterized by various spectroscopies such as UV, Raman, X-ray diffraction, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy combined with microscopic methods such as scanning electron microscopy, transmission electron microscopy (TEM), and high-resolution TEM. The characterization confirmed that high-quality heterostructures had been fabricated with evenly and uniformly distributed AgNPs. Fabrication of anatase TiO2 was confirmed, and formation of AgNPs was verified with surface plasmon resonant properties. The photocatalytic activity results measured in the gas phase showed that deposition of AgNPs increases photocatalytic activity both under UVA and visible light excitation; moreover, enhanced hydrogen evolution was demonstrated under visible light.</p>