People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Eslava, Salvador
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Activating 2D MoS2 by loading 2D Cu–S nanoplatelets for improved visible light photocatalytic hydrogen evolution, drug degradation, and CO2 reductioncitations
- 2024Ca‐doped PrFeO<sub>3</sub> photocathodes with enhanced photoelectrochemical activitycitations
- 2021Structural Evolution of Iron Forming Iron Oxide in a Deep Eutectic-Solvothermal Reactioncitations
- 2021Silver-Decorated TiO2 Inverse Opal Structure for Visible Light-Induced Photocatalytic Degradation of Organic Pollutants and Hydrogen Evolutioncitations
- 2020Silver-Decorated TiO2 Inverse Opal Structure for Visible Light-Induced Photocatalytic Degradation of Organic Pollutants and Hydrogen Evolutioncitations
- 2020Strategies for the deposition of LaFeO3 photocathodescitations
- 2019Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in watercitations
- 2019Enhanced Ceria Nanoflakes using Graphene Oxide as a Sacrificial Template for CO Oxidation and Dry Reforming of Methanecitations
- 2019Inexpensive Metal Free Encapsulation Layers Enable Halide Perovskite Based Photoanodes for Water Splitting
- 2019Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methanecitations
- 2019Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methanecitations
- 2019Strategies for the deposition of LaFeO3 photocathodes:improving the photocurrent with a polymer templatecitations
- 2018Screen printed carbon CsPbBr3 solar cells with high open-circuit photovoltagecitations
- 2018Enhanced Ceria Nanoflakes using Graphene Oxide as a Sacrificial Template for CO Oxidation and Dry Reforming of Methanecitations
- 2018Efficient hematite photoanodes prepared by hydrochloric acid-treated solutions with amphiphilic graft copolymercitations
- 2017A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxidecitations
- 2016Autonomous self-healing structural composites with bio-inspired designcitations
- 2015Printing in Three Dimensions with Graphenecitations
- 2013Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronicscitations
- 2008Reaction of trimethylchlorosilane in spin-on Silicalite-1 zeolite filmcitations
- 2008Nanoporous organosilicate films prepared in acidic conditions using tetraalkylammonium bromide porogenscitations
- 2007Characterization of a molecular sieve coating using ellipsometric porosimetrycitations
- 2007Profile control of novel non-Si gates using B Cl3 N2 plasmacitations
Places of action
Organizations | Location | People |
---|
article
Silver-Decorated TiO2 Inverse Opal Structure for Visible Light-Induced Photocatalytic Degradation of Organic Pollutants and Hydrogen Evolution
Abstract
<p>TiO2 inverse opal (TIO) structures were prepared by the conventional wet chemical method, resulting in well-formed structures for photocatalytic activity. The obtained structures were functionalized with liquid flame spray-deposited silver nanoparticles (AgNPs). The nanocomposites of TIO and AgNPs were extensively characterized by various spectroscopies such as UV, Raman, X-ray diffraction, energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy combined with microscopic methods such as scanning electron microscopy, transmission electron microscopy (TEM), and high-resolution TEM. The characterization confirmed that high-quality heterostructures had been fabricated with evenly and uniformly distributed AgNPs. Fabrication of anatase TiO2 was confirmed, and formation of AgNPs was verified with surface plasmon resonant properties. The photocatalytic activity results measured in the gas phase showed that deposition of AgNPs increases photocatalytic activity both under UVA and visible light excitation; moreover, enhanced hydrogen evolution was demonstrated under visible light.</p>