Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sun, Xin

  • Google
  • 4
  • 13
  • 50

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Palmer Amaranth (Amaranthus palmeri S. Watson) and Soybean (Glycine max L.) Classification in Greenhouse Using Hyperspectral Imaging and Chemometrics Methods2citations
  • 2021The In Situ Observation of Phase Transformations During Intercritical Annealing of a Medium Manganese Advanced High Strength Steel by High Energy X-Ray Diffraction7citations
  • 2020High Interfacial Hole‐Transfer Efficiency at GaFeO3 Thin Film Photoanodes23citations
  • 2020Promoting Active Electronic States in LaFeO3 Thin-Films Photocathodes via Alkaline-Earth Metal Substitution18citations

Places of action

Chart of shared publication
Costa, Cristiano
1 / 1 shared
Zhang, Yu
1 / 39 shared
Howatt, Kirk
1 / 1 shared
Nowatzki, John
1 / 1 shared
Bajwa, Sreekala
1 / 1 shared
Matlock, David K.
1 / 8 shared
Moor, Emmanuel De
1 / 9 shared
Mueller, Josh J.
1 / 1 shared
Hu, Xiaohua
1 / 2 shared
Ren, Yang
1 / 13 shared
Speer, John G.
1 / 13 shared
Tiwari, Devendra
2 / 29 shared
Fermín, David J.
2 / 37 shared
Chart of publication period
2022
2021
2020

Co-Authors (by relevance)

  • Costa, Cristiano
  • Zhang, Yu
  • Howatt, Kirk
  • Nowatzki, John
  • Bajwa, Sreekala
  • Matlock, David K.
  • Moor, Emmanuel De
  • Mueller, Josh J.
  • Hu, Xiaohua
  • Ren, Yang
  • Speer, John G.
  • Tiwari, Devendra
  • Fermín, David J.
OrganizationsLocationPeople

article

Promoting Active Electronic States in LaFeO3 Thin-Films Photocathodes via Alkaline-Earth Metal Substitution

  • Sun, Xin
  • Tiwari, Devendra
  • Fermín, David J.
Abstract

The effects of alkaline-earth metal cation (AMC: Mg2+, Ca2+, Sr2+ and Ba2+) substitution on the photoelectrochemical properties of phase-pure LaFeO3 (LFO) thin-films are elucidated by X-ray Photoemission Spectroscopy (XPS), X-ray Diffraction (XRD), diffuse reflectance and electrochemical impedance spectroscopy (EIS). XRD confirms the formation of single-phase cubic LFO thin films, with a rather complex dependence on the nature of the AMC and extent of substitution. Interestingly, subtle trends in lattice constant variations observed in XRD are closely correlated with shifts in the binding energies of Fe 2p3/2 and O 1s orbitals associated with the perovskite lattice. We establish a scaling factor between these two photoemission peaks, unveiling key correlation between Fe oxidation state and Fe-O covalency. Diffuse reflectance shows that optical transitions are little affected by AMC substitution below 10%, which are dominated by a direct bandgap transition close to 2.72 eV. Differential capacitance data obtained from EIS confirm the p-type characteristic of pristine LFO thin-films, revealing the presence of sub-bandgap electronic state (A-states) close to the valence band edge. The density of A-states is decreased upon AMC substitution, while the overall capacitance increases (increase in dopant level) and the apparent flat-band potential shifts towards more positive potentials. This behaviour is consistent with the change in the valence band photoemission edge. In addition, capacitance data of cation-substituted films show the emergence of deeper states centred around 0.6 eV above the valence band edge (B-states). Photoelectrochemical responses towards the hydrogen evolution and oxygen reduction reactions in alkaline solutions show a complex dependence on alkaline-earth metal incorporation, reaching incident-photon-to-current conversion efficiency close to 20% in oxygen saturated solutions. We rationalise the photoresponses of the LFO films in terms of the effect sub-band gap states on majority carrier mobility, charge transfer and recombination kinetics.

Topics
  • density
  • perovskite
  • surface
  • phase
  • mobility
  • x-ray diffraction
  • thin film
  • x-ray photoelectron spectroscopy
  • Oxygen
  • Hydrogen
  • electrochemical-induced impedance spectroscopy