People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saari, Jesse
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Ti3+ Self-Doping-Mediated Optimization of TiO2 Photocatalyst Coating Grown by Atomic Layer Depositioncitations
- 2023Is Carrier Mobility a Limiting Factor for Charge Transfer in Tio2/Si Devices? A Study by Transient Reflectance Spectroscopycitations
- 2022Insights into Tailoring of Atomic Layer Deposition Grown TiO2 as Photoelectrode Coating
- 2022Low-Temperature Route to Direct Amorphous to Rutile Crystallization of TiO2Thin Films Grown by Atomic Layer Depositioncitations
- 2022Tunable Ti3+-Mediated Charge Carrier Dynamics of Atomic Layer Deposition-Grown Amorphous TiO2citations
- 2021Interface Engineering of TiO2 Photoelectrode Coatings Grown by Atomic Layer Deposition on Siliconcitations
- 2020Optimization of photogenerated charge carrier lifetimes in ald grown tio2 for photonic applicationscitations
- 2019Defect engineering of atomic layer deposited TiO2 for photocatalytic applications
- 2019Diversity of TiO2: Controlling the molecular and electronic structure of atomic layer deposited black TiO2citations
- 2018Fabrication of topographically microstructured titanium silicide interface for advanced photonic applicationscitations
- 2018Role of Oxide Defects in ALD grown TiO2 Coatings on Performance as Photoanode Protection Layer
- 2018Improved Stability of Atomic Layer Deposited Amorphous TiO2 Photoelectrode Coatings by Thermally Induced Oxygen Defectscitations
- 2017Role of Oxide Defects in ALD grown TiO2 Coatings on Performance as Photoanode Protection Layer
- 2017Tailored Fabrication of Transferable and Hollow Weblike Titanium Dioxide Structurescitations
- 2017Tailored Fabrication of Transferable and Hollow Weblike Titanium Dioxide Structurescitations
- 2016Fabrication of topographically microstructured titanium silicide interface for advanced photonic applicationscitations
Places of action
Organizations | Location | People |
---|
article
Ti3+ Self-Doping-Mediated Optimization of TiO2 Photocatalyst Coating Grown by Atomic Layer Deposition
Abstract
Titanium dioxide (TiO2) thin films are being applied in various photonic applications where precise controlling of thin film morphology and crystal structure are required for optimum performance. Here, photocatalytic TiO2 thin films were fabricated by atomic layer deposition (ALD) using TDMAT and H2O precursors utilizing growth temperature (150–225 °C) controlled self-doping with Ti3+. The performance was optimized in terms of post-deposition annealing (PDA) temperature (<500 °C) and film thickness (20–50 nm) towards photoelectrochemical water oxidation in 1 M NaOH under 1 Sun illumination. During the PDA, low ALD growth temperatures (150 °C and 175 °C) result in abrupt crystallization to anatase, whereas films grown at higher temperatures (200 °C and 225 °C) crystallize gradually to rutile. Unlike crystalline TiO2, as-deposited Ti3+ self-doped TiO2 films are amorphous and have low stability in 1 M NaOH. The best activity for water oxidation under 1 Sun is obtained for the 30 nm post-annealed rutile TiO2 film with a maximum photocurrent of 0.3 mA/cm2. This benchmark performance can be attributed to the optimum TiO2 absorption with respect to carrier diffusion length and more efficient solar light absorption of rutile TiO2 compared to anatase TiO2. These results demonstrate a simple strategy to fabricate either anatase or rutile TiO2 thin films by controlling the ALD growth temperature. ; Peer reviewed