People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vicent-Luna, José Manuel
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Adsorption Characteristics of Refrigerants for Thermochemical Energy Storage in Metal–Organic Frameworkscitations
- 2024Adapted thermodynamical model for the prediction of adsorption in nanoporous materialscitations
- 2022Transferable Classical Force Field for Pure and Mixed Metal Halide Perovskites Parameterized from First-Principlescitations
- 2021Efficient Computation of Structural and Electronic Properties of Halide Perovskites Using Density Functional Tight Bindingcitations
- 2021Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI3citations
- 2021Atomistic Insights Into the Degradation of Inorganic Halide Perovskite CsPbI3:A Reactive Force Field Molecular Dynamics Studycitations
- 2021Efficient Computation of Structural and Electronic Properties of Halide Perovskites Using Density Functional Tight Binding:GFN1-xTB Methodcitations
- 2020Further Extending the Dilution Range of the “Solvent-in-DES” Regime upon the Replacement of Water by an Organic Solvent with Hydrogen Bond Capabilitiescitations
- 2020Efficient modelling of ion structure and dynamics in inorganic metal halide perovskitescitations
- 2018Role of Ionic Liquid [EMIM]+[SCN]- in the Adsorption and Diffusion of Gases in Metal-Organic Frameworkscitations
- 2016Liquid self-diffusion of H2O and DMF molecules in Co-MOF-74citations
- 2016Storage and Separation of Carbon Dioxide and Methane in Hydrated Covalent Organic Frameworkscitations
Places of action
Organizations | Location | People |
---|
article
Adsorption Characteristics of Refrigerants for Thermochemical Energy Storage in Metal–Organic Frameworks
Abstract
The adsorption of fluorocarbons has gained significant importance as it is used as refrigerants in energy storage applications. In this context, the adsorption behavior of two low global warming potential refrigerants, R125 fluorocarbon and its hydrocarbon analogue R170, within four nanoporous materials, namely, MIL-101, Cu-BTC, ZIF-8, and UiO-66, has been investigated. By analyzing the validity of our models against experimental observations, we ensured the reliability of our molecular simulations. Our analysis encompasses a range of crucial parameters, including adsorption isotherms, the enthalpy of adsorption, and energy storage densities, all under varying operating conditions. We find remarkable agreement between the computed and observed adsorption isotherms for R125 within MIL-101. However, to obtain similar success for the rest of the adsorbents, we need to take into account a few considerations, such as the presence of inaccessible cages in Cu-BTC, the flexibility of ZIF-8, or the defects in UiO-66. Transitioning to energy storage properties, we investigated various scenarios, including processes with varying adsorption and desorption conditions. Our findings underscore the dominance of MIL-101 in terms of storage densities, with R125 exhibiting a superior affinity over R170. Complex mechanisms governed by changes in the pressure, temperature, and desorption behavior make for complicated patterns, demanding a case-specific approach. In summary, this study navigates the complex landscape of refrigerant adsorption in diverse nanoporous materials. It highlights the significance of operating conditions, model selection, and refrigerant and adsorbent choices for energy storage applications.