People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Han, Li
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2020Interface fracture energy of contact layers in a solid oxide cell stackcitations
- 2018High-temperature thermoelectric properties of Na- and W-Doped Ca3Co4O9 system citations
- 2017Mid-IR optical properties of silicon doped InPcitations
- 2017Thermal operating window for PEDOT:PSS films and its related thermoelectric propertiescitations
- 2017Thermal operating window for PEDOT:PSS films and its related thermoelectric propertiescitations
- 2016On the Challenges of Reducing Contact Resistances in Thermoelectric Generators Based on Half-Heusler Alloyscitations
- 2016On the Challenges of Reducing Contact Resistances in Thermoelectric Generators Based on Half-Heusler Alloyscitations
- 2016On the Challenges of Reducing Contact Resistances in Thermoelectric Generators Based on Half-Heusler Alloyscitations
- 2016Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluridecitations
- 2016Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric materialcitations
- 2016Promising bulk nanostructured Cu2Se thermoelectrics via high throughput and rapid chemical synthesiscitations
- 2014Characterization of the interface between an Fe–Cr alloy and the p-type thermoelectric oxide Ca3Co4O9citations
- 2014The effect of setting velocity on the static and fatigue strengths of self-piercing riveted joints for automotive applications
- 2014Fabrication, spark plasma consolidation, and thermoelectric evaluation of nanostructured CoSb3citations
- 2014Characterization of the interface between an Fe–Cr alloy and the p -type thermoelectric oxide Ca 3 Co 4 O 9citations
- 2014Fabrication, spark plasma consolidation, and thermoelectric evaluation of nanostructured CoSb 3citations
- 2013The Influence of α- and γ-Al 2 O 3 Phases on the Thermoelectric Properties of Al-doped ZnOcitations
- 2013The Influence of α- and γ-Al2O3 Phases on the Thermoelectric Properties of Al-doped ZnOcitations
- 2008Formation and microstructure of (Ti, V)C-reinforeed iron-matrix composites using self-propagating high-temperature synthesis
- 2006Fretting behaviour of self-piercing riveted aluminium alloy joints under different interfacial conditions
Places of action
Organizations | Location | People |
---|
article
Interface fracture energy of contact layers in a solid oxide cell stack
Abstract
A critical factor for improving the long-term stability/reliability of solid oxide cell stacks is ensuring good adhesion between the stack components. Specifically, ensuring strong adherence between the oxygen electrode and the interconnect is challenging. This work compares the suitability of several materials as contact layers between a La<sub>0.6</sub>Sr<sub>0.4</sub>CoO<sub>3–δ</sub>-Ce<sub>0.8</sub>Gd<sub>0.2</sub>O<sub>2 </sub>composite oxygen electrode and Mn<sub>1.5</sub>Co<sub>1.5</sub>O<sub>4 </sub>or Co coated metallic interconnects. The contact materials were screened based on measurements of the interface fracture energy using four-point bending of sandwiched samples. The highest fracture energies were measured using a CuMn metallic, spinel forming foam as the contact layer. The fracture energy of the interface between a Mn<sub>1.5</sub>Co<sub>1.5</sub>O<sub>4</sub>coated interconnect and the contact layer is ~8 times higher using the CuMn foam compared to using the conventional perovskite oxides (La0.8Sr0.2)0.98MnO3-δ, La0.6Sr0.4CoO3–δ, (La<sub>0.8</sub>Sr<sub>0.2</sub>)<sub>0.98</sub>MnO<sub>3-δ</sub> + La<sub>0.6</sub>Sr<sub>0.4</sub>CoO<sub>3–δ</sub> or LaNi<sub>0.6</sub>Fe<sub>0.4</sub>O<sub>3</sub> as the contact material. The interface bonding and fracture mechanisms are discussed on the basis of scanning electron microscopy investigations.