People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skelton, Jonathan M.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Electronic transport and the thermoelectric properties of donor-doped SrTiO3citations
- 2024Composition-dependent morphologies of CeO2 nanoparticles in the presence of Co-adsorbed H2O and CO2citations
- 2024Composition-dependent morphologies of CeO 2 nanoparticles in the presence of Co-adsorbed H 2 O and CO 2 : a density functional theory studycitations
- 2023Thermoelectric properties of Pnma and R3m GeS and GeSecitations
- 2023A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysiscitations
- 2023A Low‐Temperature Synthetic Route Toward a High‐Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysiscitations
- 2023Breathing Behaviour Modification of Gallium MIL‐53 Metal–Organic Frameworks Induced by the Bridging Framework Inorganic Anioncitations
- 2023Synthetic Strategies toward High Entropy Materials: Atoms-to-Lattices for Maximum Disordercitations
- 2023Enhanced Thermoelectric Performance of Tin(II) Sulfide Thin Films Prepared by Aerosol Assisted Chemical Vapor Depositioncitations
- 2020Polymorph exploration of bismuth stannate using first-principles phonon mode mappingcitations
- 2020Lattice dynamics of Pnma Sn(S1-xSex) solid solutions: energetics, phonon spectra and thermal transportcitations
- 2020Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskitescitations
- 2020Watching Photochemistry Happencitations
- 2019Thermodynamics, Electronic Structure, and Vibrational Properties of Sn n(S 1- xSe x) m Solid Solutions for Energy Applicationscitations
- 2019Room Temperature Metallic Conductivity in a Metal–Organic Framework Induced by Oxidationcitations
- 2019Thermodynamics, Electronic Structure, and Vibrational Properties of Sn n (S 1– x Se x) m Solid Solutions for Energy Applicationscitations
- 2019Photocrystallographic studies on transition metal nitrito metastable linkage isomers: manipulating the metastable statecitations
- 2018Acoustic phonon lifetimes limit thermal transport in methylammonium lead iodidecitations
- 2018Understanding the fast phase-change mechanism of tetrahedrally bonded Cu 2 GeTe 3 :Comprehensive analyses of electronic structure and transport phenomenacitations
- 2018Understanding the fast phase-change mechanism of tetrahedrally bonded Cu2GeTe3citations
- 2018Hydrogen Bonding versus Entropycitations
- 2017Chemical and Lattice Stability of the Tin Sulfidescitations
- 2016Phonon anharmonicity, lifetimes, and thermal transport in CH 3 NH 3 PbI 3 from many-body perturbation theorycitations
- 2016Phonon anharmonicity, lifetimes, and thermal transport in CH3NH3PbI3 from many-body perturbation theorycitations
- 2016Observation of a re-entrant phase transition in the molecular complex tris(μ2-3,5-diisopropyl-1,2,4-triazolato-κ2N1:N2)trigold(I) under high pressurecitations
- 2016A general forcefield for accurate phonon properties of metal-organic frameworkscitations
- 2016Band alignments, valence bands, and core levels in the tin sulfides SnS, SnS2, and Sn2S3citations
- 2016Computational materials design of crystalline solidscitations
- 2015Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductorscitations
- 2014Atomistic origin of the enhanced crystallization speed and n-type conductivity in Bi-doped Ge-Sb-Te phase-change materialscitations
Places of action
Organizations | Location | People |
---|
article
Enhanced Thermoelectric Performance of Tin(II) Sulfide Thin Films Prepared by Aerosol Assisted Chemical Vapor Deposition
Abstract
Orthorhombic SnS exhibits excellent thermoelectric performance as a consequence its relatively high Seebeck coefficient and low thermal conductivity. In the present work, polycrystalline orthorhombic SnS thin films were prepared by aerosol-assisted chemical vapor deposition (AACVD) using the single source precursor dibutyl-bis(diethyldithiocarbamato)tin(IV) [Sn(C4H9)2(S2CN(C2H5)2)2]. We examined the effects of the processing parameters on the composition, microstructure, and electrical transport properties of the SnS films. Deposition temperature dominates charge transport; the room temperature electrical conductivity increased from 0.003 to 0.19 S·cm–1 as deposition temperature increased from 375 to 445 °C. Similarly, the maximum power factor (PF) increased with deposition temperature, reaching ∼0.22 μW·cm–1·K–2 at 570 K. The power factors for SnS films deposited by AACVD are higher than values from earlier work on SnS bulks and SnS/SnSe films at temperatures up to 520 K. The electronic structure and electrical transport properties of SnS were investigated using density-functional theory to provide an improved understanding of the materials performance. To the best of our knowledge, the thermal conductivity (κ) of SnS film was measured for the first time allowing the figure of merit (zT) for SnS film to be evaluated. A relatively low thermal conductivity of ∼0.41 W·m–1·K–1 was obtained at 550 K for SnS films deposited at 445 °C; the corresponding zT value was ∼0.026. The SnS films are good candidates for thermoelectric applications and AACVD is a promising technique for the preparation of high-performance thermoelectric films.