Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Diem, A.

  • Google
  • 1
  • 6
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Shape-conformable, eco-friendly cellulose aerogels as high-performance battery separators17citations

Places of action

Chart of shared publication
Raafat, L.
1 / 1 shared
Jahnke, T.
1 / 4 shared
Majer, Günter
1 / 3 shared
Burghard, Z.
1 / 2 shared
Bill, J.
1 / 4 shared
Wicklein, B.
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Raafat, L.
  • Jahnke, T.
  • Majer, Günter
  • Burghard, Z.
  • Bill, J.
  • Wicklein, B.
OrganizationsLocationPeople

article

Shape-conformable, eco-friendly cellulose aerogels as high-performance battery separators

  • Raafat, L.
  • Jahnke, T.
  • Majer, Günter
  • Burghard, Z.
  • Diem, A.
  • Bill, J.
  • Wicklein, B.
Abstract

The ubiquity of portable electronics underlines the importance of high-performance flexible metal-ion batteries and the necessity of their development. Considering their ecological footprint, the application of eco-friendly recyclable battery components has become the greatest challenge and the focal point of research. However, less attention has been devoted to the development of shape-conformable separators with minimal impact on the battery performance and the environment. It is therefore imperative to develop a rational design of next-generation eco-friendly separators with an optimized structure–performance relationship. In this work, a highly flexible and eco-friendly cellulose-nanofiber aerogel (CNF-AG) separator is developed and its dynamic behavior in battery cells is assessed. The tailored channel-like structure with a meso- and macroporosity of 99.5% and good mechanical stability results in superior performance to the commercial glass fiber (GF) membranes and other cellulose-based separators. Its structure with a well-connected pore network and affinity to carbonate-based and ionic liquid electrolytes realize an electrolyte uptake of 12 000%. Furthermore, an effective diffusion coefficient of 1.70 × 10–10 m2 s–1, only 16% lower than that of the bulk electrolyte, yielded an ionic conductivity of 2.64 mS cm–1. Assessing the CNF-AG in lithium-ion batteries (LIBs) revealed a stable interfacial resistance over time, reaching 380 Ω, one-third of that obtained for GF. Accordingly, superior electrochemical performance is observed, achieving good cycling stability up to 200 cycles. Moreover, its applicability in aluminum-ion batteries is demonstrated. The outstanding structure–performance relationships of the developed CNF-AG indicate its superiority as a shape-conformable biodegradable separator suitable for metal-ion batteries.

Topics
  • impedance spectroscopy
  • pore
  • aluminium
  • glass
  • glass
  • laser emission spectroscopy
  • mass spectrometry
  • Lithium
  • interfacial
  • cellulose