People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Diem, A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Shape-conformable, eco-friendly cellulose aerogels as high-performance battery separators
Abstract
The ubiquity of portable electronics underlines the importance of high-performance flexible metal-ion batteries and the necessity of their development. Considering their ecological footprint, the application of eco-friendly recyclable battery components has become the greatest challenge and the focal point of research. However, less attention has been devoted to the development of shape-conformable separators with minimal impact on the battery performance and the environment. It is therefore imperative to develop a rational design of next-generation eco-friendly separators with an optimized structure–performance relationship. In this work, a highly flexible and eco-friendly cellulose-nanofiber aerogel (CNF-AG) separator is developed and its dynamic behavior in battery cells is assessed. The tailored channel-like structure with a meso- and macroporosity of 99.5% and good mechanical stability results in superior performance to the commercial glass fiber (GF) membranes and other cellulose-based separators. Its structure with a well-connected pore network and affinity to carbonate-based and ionic liquid electrolytes realize an electrolyte uptake of 12 000%. Furthermore, an effective diffusion coefficient of 1.70 × 10–10 m2 s–1, only 16% lower than that of the bulk electrolyte, yielded an ionic conductivity of 2.64 mS cm–1. Assessing the CNF-AG in lithium-ion batteries (LIBs) revealed a stable interfacial resistance over time, reaching 380 Ω, one-third of that obtained for GF. Accordingly, superior electrochemical performance is observed, achieving good cycling stability up to 200 cycles. Moreover, its applicability in aluminum-ion batteries is demonstrated. The outstanding structure–performance relationships of the developed CNF-AG indicate its superiority as a shape-conformable biodegradable separator suitable for metal-ion batteries.