Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dar, M. Ibrahim

  • Google
  • 9
  • 30
  • 506

University of Cambridge

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2023Advances in All-Inorganic Perovskite Nanocrystal-Based White Light Emitting Devices.citations
  • 2023Champion Device Architectures for Low-Cost and Stable Single-Junction Perovskite Solar Cells.citations
  • 2023Champion Device Architectures for Low-Cost and Stable Single-Junction Perovskite Solar Cellscitations
  • 2023Advances in All-Inorganic Perovskite Nanocrystal-Based White Light Emitting Devicescitations
  • 2022An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles243citations
  • 2022Impact of Monovalent Metal Halides on the Structural and Photophysical Properties of Halide Perovskitecitations
  • 2021An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles243citations
  • 2020Role of Morphology and Förster Resonance Energy Transfer in Ternary Blend Organic Solar Cells20citations
  • 2018Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations.citations

Places of action

Chart of shared publication
Bai, Xinyu
4 / 6 shared
Shamsi, Javad
2 / 9 shared
Arora, Neha
6 / 8 shared
Wani, Tajamul A.
3 / 3 shared
Abdi-Jalebi, Mojtaba
3 / 29 shared
Jia, Xiaohan
2 / 2 shared
Grätzel, Michael
3 / 38 shared
Saleh, Amina A.
1 / 1 shared
Huang, Siming
2 / 2 shared
Baumeler, Thomas
2 / 3 shared
Wani, Tajamul Aa
1 / 1 shared
Saleh, Amina Aa
1 / 1 shared
Abdi Jalebi, Mojtaba
1 / 2 shared
Friend, Richard, H.
2 / 549 shared
Mohapatra, Aiswarya Abhisek
1 / 1 shared
Sadhanala, Aditya
2 / 29 shared
Podapangi, Suresh
1 / 1 shared
Hinderhofer, Alexander
1 / 15 shared
Maity, Nilabja
1 / 1 shared
Schreiber, Frank
1 / 26 shared
Shivanna, Ravichandran
1 / 10 shared
Patil, Satish
1 / 6 shared
Kullgren, Jolla
1 / 3 shared
Imani, Roghayeh
1 / 3 shared
Rensmo, Håkan
1 / 20 shared
Alsari, Mejd
1 / 10 shared
Divitini, Giorgio
1 / 37 shared
Philippe, Bertrand
1 / 15 shared
Lilliu, Samuele
1 / 6 shared
Pazoki, Meysam
1 / 4 shared
Chart of publication period
2023
2022
2021
2020
2018

Co-Authors (by relevance)

  • Bai, Xinyu
  • Shamsi, Javad
  • Arora, Neha
  • Wani, Tajamul A.
  • Abdi-Jalebi, Mojtaba
  • Jia, Xiaohan
  • Grätzel, Michael
  • Saleh, Amina A.
  • Huang, Siming
  • Baumeler, Thomas
  • Wani, Tajamul Aa
  • Saleh, Amina Aa
  • Abdi Jalebi, Mojtaba
  • Friend, Richard, H.
  • Mohapatra, Aiswarya Abhisek
  • Sadhanala, Aditya
  • Podapangi, Suresh
  • Hinderhofer, Alexander
  • Maity, Nilabja
  • Schreiber, Frank
  • Shivanna, Ravichandran
  • Patil, Satish
  • Kullgren, Jolla
  • Imani, Roghayeh
  • Rensmo, Håkan
  • Alsari, Mejd
  • Divitini, Giorgio
  • Philippe, Bertrand
  • Lilliu, Samuele
  • Pazoki, Meysam
OrganizationsLocationPeople

article

Role of Morphology and Förster Resonance Energy Transfer in Ternary Blend Organic Solar Cells

  • Friend, Richard, H.
  • Mohapatra, Aiswarya Abhisek
  • Sadhanala, Aditya
  • Dar, M. Ibrahim
  • Podapangi, Suresh
  • Hinderhofer, Alexander
  • Maity, Nilabja
  • Schreiber, Frank
  • Shivanna, Ravichandran
  • Patil, Satish
Abstract

Organic solar cells (OSCs) fabricated from ternary blend thin film absorbers are designed to maximize the range of absorption in the solar spectrum and thus increase the short-circuit current density (J$_{SC}$) of the device. Herein, we report OSCs formed with two different compositions of ternary blend thin films comprising two electron donors and one acceptor, namely, PTB7-Th/PCDTBT/IT4F and PTB7-Th/PBDB-T/IT4F. We evaluate the role of Förster resonance energy transfer (FRET) and blend morphology to achieve composition-dependent device performance. We observed ≥10% increment in J$_{SC}$ for both the ternary blends as compared to that for the PTB7-Th:IT4F binary blend, resulting in an enhanced power conversion efficiency (PCE) up to 10.34% for the PTB7-Th:PBDB-T:IT4F blend. We provide evidence that the two foremost parameters that control the PCE are blend morphology and FRET between donor components. The improved exciton generation rate for PCDTBT-based ternary blends was achieved, suggesting effective contribution of FRET toward enhanced device photocurrent, whereas the PBDB-T-based ternary blend excelled mainly due to suppressed carrier recombination as a result of favorable orientation with PTB7-Th/IT4F.

Topics
  • density
  • morphology
  • thin film
  • current density
  • power conversion efficiency