Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Remartinez, V. Celorrio

  • Google
  • 1
  • 10
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Electrocatalytic Site Activity Enhancement via Orbital Overlap in A 2MnRuO 7(A = Dy 3+, Ho 3+, and Er 3+) Pyrochlore Nanostructures10citations

Places of action

Chart of shared publication
Alonso, J. A.
1 / 18 shared
Aguadero, Ainara
1 / 15 shared
Russell, Andrea
1 / 2 shared
Tiwari, Devendra
1 / 29 shared
Fermín, David J.
1 / 37 shared
Pinacca, Ruben
1 / 2 shared
Granozzi, Gaetano
1 / 29 shared
Calvillo, Laura
1 / 15 shared
Huang, H.
1 / 12 shared
Leach, A.
1 / 4 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Alonso, J. A.
  • Aguadero, Ainara
  • Russell, Andrea
  • Tiwari, Devendra
  • Fermín, David J.
  • Pinacca, Ruben
  • Granozzi, Gaetano
  • Calvillo, Laura
  • Huang, H.
  • Leach, A.
OrganizationsLocationPeople

article

Electrocatalytic Site Activity Enhancement via Orbital Overlap in A 2MnRuO 7(A = Dy 3+, Ho 3+, and Er 3+) Pyrochlore Nanostructures

  • Alonso, J. A.
  • Aguadero, Ainara
  • Russell, Andrea
  • Tiwari, Devendra
  • Remartinez, V. Celorrio
  • Fermín, David J.
  • Pinacca, Ruben
  • Granozzi, Gaetano
  • Calvillo, Laura
  • Huang, H.
  • Leach, A.
Abstract

Oxygen electrocatalysis at transition metal oxides is one of the key challenges underpinning electrochemical energy conversion systems, involving a delicate interplay of bulk electronic structure and surface coordination of the active sites. In this work, we investigate for the first time the structure-activity relationship of A2RuMnO7 (A = Dy3+, Ho3+, Er3+) nanoparticles, demonstrating how orbital mixing of Ru, Mn, and O promotes high density of states (DOS) at the appropriate energy range for oxygen electrocatalysis. The bulk and surface structure of these multicomponent pyrochlores are investigated by high-resolution transmission electron microscopy, X-ray diffraction, X-ray absorption (XAS), X-ray emission (XES) and X-ray photoemission (XPS) spectroscopies. The materials exhibit high phase purity (cubic fcc with a space group Fd3 ̅m), in which variations in M-O bonds length are less than 1% upon replacing the A-site lanthanide. XES and XPS show that the mean oxidation state at the Mn-site as well as the nanoparticle surface composition were slightly affected by the lanthanide. The pyrochlore nanoparticles are significantly more active than the binary RuO2 and MnO2 towards the 4-electron oxygen reduction reaction (ORR) in alkaline solutions. Interestingly, normalization of kinetic parameters by the number density of electroactive sites concludes that Dy2RuMnO7 shows twice higher activity than benchmark materials such as LaMnO3. Analysis of the electrochemical profiles supported by DFT calculations reveals that the origin of the enhanced catalytic activity is linked to the mixing of Ru and Mn d-orbitals and O p-orbitals at the conduction band which strongly overlap with the formal redox energy of O2 in solution. The activity enhancement strongly manifests in the case of Dy2RuMnO7 where Ru/Mn ratio is closer to 1 in comparison with the Ho3+ and Er3+ analogs. These electronic effects are discussed in the context of the Gerischer formalism for electron transfer at the semiconductor/electrolyte junctions.

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • surface
  • phase
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • Oxygen
  • semiconductor
  • laser emission spectroscopy
  • transmission electron microscopy
  • density functional theory
  • Lanthanide
  • x-ray absorption spectroscopy
  • space group
  • X-ray emission spectroscopy