People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Viviani, Marco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Full-scale testing and multiphysics modeling of a reinforced shot-earth concrete vault with self-sensing propertiescitations
- 2024Full-scale testing and multiphysics modeling of a reinforced shot-earth concrete vault with self-sensing propertiescitations
- 2024Full-scale testing and multiphysics modeling of a reinforced shot-earth concrete vault with self-sensing propertiescitations
- 2021Structural Transitions During Formation and Rehydration of Proton Conducting Polymeric Membranescitations
- 2021Proton conducting ABA triblock copolymers with sulfonated poly(phenylene sulfide sulfone) midblock obtained via copper-free thiol-click chemistry daggercitations
- 2020Highly Stable Membranes of Poly(phenylene sulfide benzimidazole) Cross-Linked with Polyhedral Oligomeric Silsesquioxanes for High-Temperature Proton Transportcitations
- 2018Simple and effective models to predict the compressive and tensile strength of HPFRC as the steel fiber content and type changescitations
Places of action
Organizations | Location | People |
---|
article
Highly Stable Membranes of Poly(phenylene sulfide benzimidazole) Cross-Linked with Polyhedral Oligomeric Silsesquioxanes for High-Temperature Proton Transport
Abstract
Poly(phenylene sulfide benzimidazole) has been synthesized and tested as a potential material for high-temperature proton transport. A high content of sulfide bonds has been implemented in the polymer chains to endow a high antioxidant capacity and, in combination with bulky benzimidazole pendant units, to significantly suppress crystallinity and thereby improve the solubility in highly polar aprotic solvents. The amorphous polymer has high thermal stability and high glass transition temperature (Tg). Freestanding, insoluble, and robust membranes were obtained via thermal cross-linking of the benzimidazole moieties with octa-glycidyl polyhedral oligomeric silsesquioxane (g-POSS). The series of hybrid networks (cPPSBi_X, with X being the g-POSS content wt %) showed excellent oxidative stability, with cPPSBi_15 having weight loss lower than 5% after 264 h in Fenton's reagent at 80 °C. Elastic moduli as high as 868 MPa with reduced strain at break (1.8%) were obtained. After doping the membranes with phosphoric acid, proton conductivity in the range of 2.3 × 10-2 S cm-1 at 180 °C was obtained, and the membranes show a stress at break of 2.3 MPa. Dimensional and mechanical stability were maintained also at high doping levels thanks to the inclusion of g-POSS which provides the resulting hybrid networks with increased free volume and high cross-link density.