Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Søgaard, Nicolaj Brink

  • Google
  • 3
  • 13
  • 11

Aarhus University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Towards non-inert synthesis and characterization of Ge1-xSnx nanoparticlescitations
  • 2023Isothermal Heteroepitaxy of Ge1-xSnx Structures for Electronic and Photonic Applications11citations
  • 2022(Si)GeSn Isothermal Multilayer Growth for Specific Applications Using GeH<sub>4</sub> and Ge<sub>2</sub>H<sub>6</sub>citations

Places of action

Chart of shared publication
Bae, Jin Hee
2 / 3 shared
Capellini, Giovanni
1 / 26 shared
Yamamoto, Yuji
1 / 9 shared
Grützmacher, Detlev
2 / 30 shared
Buca, Dan
2 / 14 shared
Zhao, Qing Tai
1 / 2 shared
Ikonic, Zoran
1 / 6 shared
Tiedemann, Andreas T.
2 / 3 shared
Concepción, Omar
1 / 4 shared
Díaz, Omar Concepción
1 / 1 shared
Krause, Oliver
1 / 1 shared
Zhao, Qing-Tai
1 / 3 shared
Brazda, Thorsten
1 / 1 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Bae, Jin Hee
  • Capellini, Giovanni
  • Yamamoto, Yuji
  • Grützmacher, Detlev
  • Buca, Dan
  • Zhao, Qing Tai
  • Ikonic, Zoran
  • Tiedemann, Andreas T.
  • Concepción, Omar
  • Díaz, Omar Concepción
  • Krause, Oliver
  • Zhao, Qing-Tai
  • Brazda, Thorsten
OrganizationsLocationPeople

article

Isothermal Heteroepitaxy of Ge1-xSnx Structures for Electronic and Photonic Applications

  • Bae, Jin Hee
  • Søgaard, Nicolaj Brink
  • Capellini, Giovanni
  • Yamamoto, Yuji
  • Grützmacher, Detlev
  • Buca, Dan
  • Zhao, Qing Tai
  • Ikonic, Zoran
  • Tiedemann, Andreas T.
  • Concepción, Omar
Abstract

<p>Epitaxy of semiconductor-based quantum well structures is a challenging task since it requires precise control of the deposition at the submonolayer scale. In the case of Ge<sub>1-x</sub>Sn<sub>x</sub> alloys, the growth is particularly demanding since the lattice strain and the process temperature greatly impact the composition of the epitaxial layers. In this paper, the realization of high-quality pseudomorphic Ge<sub>1-x</sub>Sn<sub>x</sub> layers with Sn content ranging from 6 at. % up to 15 at. % using isothermal processes in an industry-compatible reduced-pressure chemical vapor deposition reactor is presented. The epitaxy of Ge<sub>1-x</sub>Sn<sub>x</sub> layers has been optimized for a standard process offering a high Sn concentration at a large process window. By varying the N<sub>2</sub> carrier gas flow, isothermal heterostructure designs suitable for quantum transport and spintronic devices are obtained.</p>

Topics
  • impedance spectroscopy
  • semiconductor
  • chemical vapor deposition