People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schroeder, Uwe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Electrically induced cancellation and inversion of piezoelectricity in ferroelectric Hf0.5Zr0.5O2
- 2024Strain as a Global Factor in Stabilizing the Ferroelectric Properties of ZrO<sub>2</sub>citations
- 2023Strain as a global factor in stabilizing the ferroelectric properties of ZrO 2citations
- 2023Influence of the Ozone Dose Time during Atomic Layer Deposition on the Ferroelectric and Pyroelectric Properties of 45 nm-Thick ZrO2 Filmscitations
- 2023Influence of the ozone dose time during atomic layer deposition on the ferroelectric and pyroelectric properties of 45 nm-thick ZrO 2 filmscitations
- 2022Role of Oxygen Source on Buried Interfaces in Atomic-Layer-Deposited Ferroelectric Hafnia-Zirconia Thin Filmscitations
- 2022MOx in ferroelectric memories
- 2022Influence of Si-Doping on 45 nm Thick Ferroelectric ZrO2 Filmscitations
- 2022Oxygen vacancy concentration as a function of cycling and polarization state in TiN/Hf 0.5 Zr 0.5 O 2 /TiN ferroelectric capacitors studied by x-ray photoemission electron microscopycitations
- 2022Raman Spectroscopy as a Key Method to Distinguish the Ferroelectric Orthorhombic Phase in Thin ZrO2-Based Filmscitations
- 2021Reliability aspects of ferroelectric hafnium oxide for application in non-volatile memoriescitations
- 2021Chemical Stability of IrO$_{2}$ Top Electrodes in Ferroelectric Hf$_{0.5}$Zr$_{0.5}$O$_{2}$ ‐Based Metal–Insulator–Metal Structures: The Impact of Annealing Gascitations
- 2021Impact of vacancies and impurities on ferroelectricity in PVD- and ALD-grown HfO$_2$ filmscitations
- 2020Enhanced ferroelectric polarization in TiN/HfO2/TiN capacitors by interface designcitations
- 2020Influence of oxygen content on the structure and reliability of ferroelectric HfxZr1−xO2 layerscitations
- 2020Enhanced Ferroelectric Polarization in TiN/HfO$_{2}$/TiN Capacitors by Interface Designcitations
- 2019Local structural investigation of hafnia-zirconia polymorphs in powders and thin films by X-ray absorption spectroscopycitations
- 2019Recent progress for obtaining the ferroelectric phase in hafnium oxide based films: impact of oxygen and zirconiumcitations
- 2019Recent progress for obtaining the ferroelectric phase in hafnium oxide based filmscitations
- 2018Review and perspective on ferroelectric HfO₂-based thin films for memory applicationscitations
- 2018Effect of Annealing Ferroelectric HfO₂ Thin Films: In Situ, High Temperature X-Ray Diffractioncitations
- 2018Origin of Temperature-Dependent Ferroelectricity in SiDoped HfO₂citations
- 2018Hafnium oxide based ferroelectric devices for memories and beyondcitations
- 2018Atomic Structure of Domain and Interphase Boundaries in Ferroelectric HfO₂citations
- 2015Ultra-thin ZrO2/SrO/ZrO2 insulating stacks for future dynamic random access memory capacitor applicationscitations
- 2014Conduction mechanisms and breakdown characteristics of Al2O 3-doped ZrO2 high-k dielectrics for three-dimensional stacked metal-insulator-metal capacitorscitations
- 2012Incipient ferroelectricity in Al-doped HfO2 thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Influence of Si-Doping on 45 nm Thick Ferroelectric ZrO2 Films
Abstract
In the last decades, ferroelectricity has been discovered in Si-doped HfO2 and Hf1–xZrxO2 thin films, and the origin of ferroelectricity is considered to be the presence of the polar Pca21 orthorhombic phase. Recently, some investigations suggest that ZrO2 thin films show ferroelectric behavior as well. As a well-known dopant capable of modulating ferroelectricity in HfO2 thin films, Si-doping is applied up to approximately 5.3% to modify the ferroelectric properties of ZrO2 films in this work. The atomic layer-deposited ZrO2 films with a 45 nm thickness shows ferroelectric behavior with a remanent polarization of 7 μC/cm2 after post-metallization annealing at 800 °C. According to Raman spectroscopy and grazing incidence X-ray diffraction structural characterizations, the amount of monoclinic and orthorhombic phases decreases, and the presence of the tetragonal phase increases by increasing the Si-doping content in the ZrO2 films. The electrical properties both at room temperature and at lower temperature demonstrate antiferroelectric characteristics with lower remanent polarization and double hysteresis loops with Si incorporation in the 45 nm thick ZrO2 films. An extrapolation of the Curie temperature for different Si-doping concentrations is obtained based on temperature-dependent remanent polarization measurements, showing evidence that Si dopants destabilize the polar ferroelectric phase. An increasing in-plane tensile strain with more Si-doping aids in stabilizing the tetragonal phase and leads to an improvement of antiferroelectric properties in 45 nm thick ZrO2.