People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fiordaliso, Elisabetta Maria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Doping Profiles in Ultrathin Vertical VLS-Grown InAs Nanowire MOSFETs with High Performance.
- 2021Doping Profiles in Ultrathin Vertical VLS-Grown InAs Nanowire MOSFETs with High Performancecitations
- 2020Effect of Cold Sintering Process (CSP) on the Electro-Chemo-Mechanical Properties of Gd-doped Ceria (GDC)citations
- 2020Shadow Epitaxy for In Situ Growth of Generic Semiconductor/Superconductor Hybridscitations
- 2019Evolution of intermetallic GaPd2/SiO2 catalyst and optimization for methanol synthesis at ambient pressurecitations
- 2015Intermetallic GaPd2 Nanoparticles on SiO2 for Low-Pressure CO2 Hydrogenation to Methanolcitations
- 2015Intermetallic GaPd 2 Nanoparticles on SiO 2 for Low-Pressure CO 2 Hydrogenation to Methanol:Catalytic Performance and In Situ Characterizationcitations
- 2012H2 splitting on Pt, Ru and Rh nanoparticles supported on sputtered HOPGcitations
- 2012Size dependent reactivity of metal nanoparticles and alloys supported on HOPG, probed by the H-D exchange and the NH3 decomposition reactions
- 2012Strong Metal Support Interaction of Pt and Ru Nanoparticles Deposited on HOPG Probed by the H-D Exchange Reactioncitations
- 2011H2-splitting on Pt/Ru alloys supported on sputtered HOPGcitations
Places of action
Organizations | Location | People |
---|
article
Doping Profiles in Ultrathin Vertical VLS-Grown InAs Nanowire MOSFETs with High Performance
Abstract
Thin vertical nanowires based on III-V compound semiconductors are viable candidates as channel material in metal oxide semiconductor field effect transistors (MOSFETs) due to attractive carrier transport properties. However, for improved performance in terms of current density as well as contact resistance, adequate characterization techniques for resolving doping distribution within thin vertical nanowires are required. We present a novel method of axially probing the doping profile by systematically changing the gate position, at a constant gate length Lg of 50 nm and a channel diameter of 12 nm, along a vertical nanowire MOSFET and utilizing the variations in threshold voltage VT shift (∼100 mV). The method is further validated using the well-established technique of electron holography to verify the presence of the doping profile. Combined, device and material characterizations allow us to in-depth study the origin of the threshold voltage variability typically present for metal organic chemical vapor deposition (MOCVD)-grown III-V nanowire devices.