People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schroeder, Uwe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Electrically induced cancellation and inversion of piezoelectricity in ferroelectric Hf0.5Zr0.5O2
- 2024Strain as a Global Factor in Stabilizing the Ferroelectric Properties of ZrO<sub>2</sub>citations
- 2023Strain as a global factor in stabilizing the ferroelectric properties of ZrO 2citations
- 2023Influence of the Ozone Dose Time during Atomic Layer Deposition on the Ferroelectric and Pyroelectric Properties of 45 nm-Thick ZrO2 Filmscitations
- 2023Influence of the ozone dose time during atomic layer deposition on the ferroelectric and pyroelectric properties of 45 nm-thick ZrO 2 filmscitations
- 2022Role of Oxygen Source on Buried Interfaces in Atomic-Layer-Deposited Ferroelectric Hafnia-Zirconia Thin Filmscitations
- 2022MOx in ferroelectric memories
- 2022Influence of Si-Doping on 45 nm Thick Ferroelectric ZrO2 Filmscitations
- 2022Oxygen vacancy concentration as a function of cycling and polarization state in TiN/Hf 0.5 Zr 0.5 O 2 /TiN ferroelectric capacitors studied by x-ray photoemission electron microscopycitations
- 2022Raman Spectroscopy as a Key Method to Distinguish the Ferroelectric Orthorhombic Phase in Thin ZrO2-Based Filmscitations
- 2021Reliability aspects of ferroelectric hafnium oxide for application in non-volatile memoriescitations
- 2021Chemical Stability of IrO$_{2}$ Top Electrodes in Ferroelectric Hf$_{0.5}$Zr$_{0.5}$O$_{2}$ ‐Based Metal–Insulator–Metal Structures: The Impact of Annealing Gascitations
- 2021Impact of vacancies and impurities on ferroelectricity in PVD- and ALD-grown HfO$_2$ filmscitations
- 2020Enhanced ferroelectric polarization in TiN/HfO2/TiN capacitors by interface designcitations
- 2020Influence of oxygen content on the structure and reliability of ferroelectric HfxZr1−xO2 layerscitations
- 2020Enhanced Ferroelectric Polarization in TiN/HfO$_{2}$/TiN Capacitors by Interface Designcitations
- 2019Local structural investigation of hafnia-zirconia polymorphs in powders and thin films by X-ray absorption spectroscopycitations
- 2019Recent progress for obtaining the ferroelectric phase in hafnium oxide based films: impact of oxygen and zirconiumcitations
- 2019Recent progress for obtaining the ferroelectric phase in hafnium oxide based filmscitations
- 2018Review and perspective on ferroelectric HfO₂-based thin films for memory applicationscitations
- 2018Effect of Annealing Ferroelectric HfO₂ Thin Films: In Situ, High Temperature X-Ray Diffractioncitations
- 2018Origin of Temperature-Dependent Ferroelectricity in SiDoped HfO₂citations
- 2018Hafnium oxide based ferroelectric devices for memories and beyondcitations
- 2018Atomic Structure of Domain and Interphase Boundaries in Ferroelectric HfO₂citations
- 2015Ultra-thin ZrO2/SrO/ZrO2 insulating stacks for future dynamic random access memory capacitor applicationscitations
- 2014Conduction mechanisms and breakdown characteristics of Al2O 3-doped ZrO2 high-k dielectrics for three-dimensional stacked metal-insulator-metal capacitorscitations
- 2012Incipient ferroelectricity in Al-doped HfO2 thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Enhanced ferroelectric polarization in TiN/HfO2/TiN capacitors by interface design
Abstract
<p>The interface formation between ferroelectric HfO<sub>2</sub> layers and TiN bottom electrodes was studied by hard X-ray photoelectron spectroscopy and directly correlated to the electric polarization characteristics of the TiN/HfO<sub>2</sub>/TiN capacitors. We consistently deduced the interface chemistry from HfO<sub>2</sub>- and TiN-related core levels, dependent on the oxygen flow in supplied before and during physical vapor deposition (PVD) growth of HfO<sub>2</sub>. The results underline the critical, twofold impact of oxygen supply on HfO<sub>2</sub> and interface properties. When supplied before growth, the supplied oxygen stabilizes the TiN/HfO<sub>2</sub> interface by oxidation and formation of a self-limiting (noninsulating) TiO<sub>2</sub> intralayer. When supplied during growth, on the other hand, oxygen flows above a critical threshold reduce the oxygen vacancy concentration within the HfO<sub>2</sub> film. We reveal a direct relation between the maximum ferroelectric remanent polarization and a critical threshold PVD oxygen exposure flow rate. The results allow for advancement of the PVD growth process in terms of a more flexible design of the ferroelectric HfO<sub>2</sub> films with chemically stable TiN interfaces.</p>