People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fox, Kate
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Algorithmic detection and categorization of partially attached particles in AM structures: a non-destructive method for the certification of lattice implantscitations
- 20203D-printed diamond-titanium composite: A hybrid material for implant engineeringcitations
- 2019Rational design of additively manufactured Ti6Al4V implants to control Staphylococcus aureus biofilm formationcitations
Places of action
Organizations | Location | People |
---|
article
3D-printed diamond-titanium composite: A hybrid material for implant engineering
Abstract
<p>Diamond-based implant materials make up an emerging research area where the materials could be prepared to promote cellular functions, decrease bacteria attachment, and be suitable for potential in situ imaging. Up until now, diamond implants have been fabricated using coating technologies or embedding diamond nanoparticles in polymer matrices. Here we demonstrated a method of manufacturing diamond implants using laser cladding technology to 3D print a composite of diamond and fused titanium material. Using this method, we could prepare composite scaffolds of up to 50% diamond, which has never been achieved before. We next investigated the interfacial properties of these scaffolds for potential applications in implants. The addition of diamond to the biomaterial results in a 30% decrease in the water contact angle, making the scaffolds more hydrophilic and improving cellular adhesion and proliferation.</p>