People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Choińska, Emilia
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024A comparative study of oxidation behavior of Co4Sb12 and Co4Sb10.8Se0.6Te0.6 skutterudite thermoelectric materials fabricated via fast SHS-PPS routecitations
- 20223D-Printed Drug Delivery Systems: The Effects of Drug Incorporation Methods on Their Release and Antibacterial Efficiency
- 2022The Utility of Recycled Rice Husk-Reinforced PVC Composite Profiles for Façade Claddingcitations
- 2021Biological and Corrosion Evaluation of In Situ Alloyed NiTi Fabricated through Laser Powder Bed Fusion (LPBF)citations
- 2021Plasma modification of carbon coating produced by RF CVD on oxidized NiTi shape memory alloy under glow-discharge conditionscitations
- 2020Molding Binder Influence on the Porosity and Gas Permeability of Ceramic Casting Moldscitations
- 2020The effect of diameter of fibre on formation of hydrogen bonds and mechanical properties of 3D-printed PCLcitations
- 2020The effect of introduction of filament shift on degradation behaviour of PLGA- and PLCL-based scaffolds fabricated via additive manufacturingcitations
- 2019Engineering Human-Scale Artificial Bone Grafts for Treating Critical-Size Bone Defectscitations
- 2018Nanobead-on-string composites for tendon tissue engineeringcitations
- 2018Micro and nanoscale characterization of poly(DL-lactic-co-glycolic acid) films subjected to the L929 cells and the cyclic mechanical loadcitations
- 2018Multi-scale characterization and biological evaluation of composite surface layers produced under glow discharge conditions on NiTi shape memory alloy for potential cardiological applicationcitations
- 2017Radiopaque biodegradable polymeric composites for in vivo monitoring of TE products by X-rays imaging
- 2016Increase of radiopacity of PCL scaffolds for their in vivo monitoring using x – rays imaging
- 2016Fabrication and characterization of electrospun bionanocomposites of poly (vinyl alcohol)/ nanohydroxyapatite/ cellulose nanofiberscitations
- 2013Investigations of polycaprolactone / gelatin blends in terms of their miscibilitycitations
Places of action
Organizations | Location | People |
---|
article
Engineering Human-Scale Artificial Bone Grafts for Treating Critical-Size Bone Defects
Abstract
The manufacturing of artificial bone grafts can potentially circumvent the issues associated with current bone grafting treatments for critical-size bone defects caused by pathological disorders, trauma, or massive tumor ablation. In this study, we report on a potentially patient-specific fabrication process in which replicas of bone defects, in particular zygomatic and mandibular bones and phalanxes of a hand finger, were manufactured by laser stereolithography and used as templates for the creation of PDMS molds. Gas-inwater foams were cast in the molds, rapidly frozen, freezedried, and cross-linked. Since bone matrix consists essentially of collagen and hydroxyapatite, biomimetic scaffolds were fabricated using gelatin and hydroxyapatite in a ratio very similar to that found in bone. The obtained composite scaffolds were excellent replicas of the original bone defects models and presented both a superficial and internal porous texture adequate for cellular and blood vessels infiltration. In particular, scaffolds exhibited a porous texture consisting of pores and interconnects with average size of about 300 and 100 μm, respectively, and a porosity of 90%. In vitro culture tests using hMSCs demonstrated scaffold biocompatibility and capacity in inducing differentiation toward osteoblasts progenitors. In vivo cellularized implants showed bone matrix deposition and recruitment of blood vessels. Overall, the technique/materials combination used in this work led to the fabrication of promising mechanically stable, bioactive, and biocompatible composite scaffolds with well-defined architectures potentially valuable in the regeneration of patient-specific bone defects.