Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nzulumike, Achebe Niels Olesen

  • Google
  • 1
  • 1
  • 10

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Fibrin Adsorption on Cardiovascular Biomaterials and Medical Devices10citations

Places of action

Chart of shared publication
Thormann, Esben
1 / 17 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Thormann, Esben
OrganizationsLocationPeople

article

Fibrin Adsorption on Cardiovascular Biomaterials and Medical Devices

  • Thormann, Esben
  • Nzulumike, Achebe Niels Olesen
Abstract

Medical devices that are inserted in blood vessels always risk eliciting thrombosis, and the surface properties of such devices are thus of major importance. The initiating step for surface-induced pathological coagulation has been associated with adsorption of fibrinogen protein on biomaterial surfaces and subsequent polymerization into an insoluble fibrin clot. This issue gives rise to an inherent challenge in biomaterial design as varied surface materials must fulfill specialized roles while also minimizing thrombotic complications from spontaneous fibrin(ogen) recruitment. We have aimed to characterize the thrombogenic properties of state-of-the-art cardiovascular biomaterials and medical devices by quantifying the relative surface-dependent adsorption and formation of fibrin followed by analysis of the resulting morphologies. We identified stainless steel and amorphous fluoropolymer as comparatively preferable biomaterials based on their low fibrin(ogen) recruitment, in comparison to other metallic and polymeric biomaterials, respectively. In addition, we observed a morphological trend that fibrin forms fiber structures on metallic surfaces and fractal branched structures on polymeric surfaces. Finally, we used vascular guidewires as clotting substrates and found that fibrin adsorption depends on parts of the guidewire that are exposed, and we correlated the morphologies on uncoated guidewires with those formed on raw stainless-steel biomaterials.

Topics
  • surface
  • amorphous
  • stainless steel
  • biomaterials