Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bock, Sören

  • Google
  • 1
  • 6
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Coordinating Tectons. Experimental and Computational Infrared Data as Tools to Identify Conformational Isomers and Explore Electronic Structures of 4-Ethynyl-2,2′-bipyridine Complexes13citations

Places of action

Chart of shared publication
Wild, Duncan
1 / 1 shared
Nervi, Carlo
1 / 2 shared
Low, Paul J.
1 / 12 shared
Lim, Chia Yang
1 / 1 shared
Skelton, Brian W.
1 / 7 shared
Mackenzie, Campbell F. R.
1 / 2 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Wild, Duncan
  • Nervi, Carlo
  • Low, Paul J.
  • Lim, Chia Yang
  • Skelton, Brian W.
  • Mackenzie, Campbell F. R.
OrganizationsLocationPeople

article

Coordinating Tectons. Experimental and Computational Infrared Data as Tools to Identify Conformational Isomers and Explore Electronic Structures of 4-Ethynyl-2,2′-bipyridine Complexes

  • Wild, Duncan
  • Nervi, Carlo
  • Low, Paul J.
  • Lim, Chia Yang
  • Skelton, Brian W.
  • Bock, Sören
  • Mackenzie, Campbell F. R.
Abstract

<p>4-Ethynyl-2,2′-bipyridyl-substituted ruthenium alkynyl complexes have been prepared and used to access a range of binuclear homometallic ruthenium and heterometallic ruthenium-rhenium complexes. These have been characterized by a variety of spectroscopic and single-crystal X-ray diffraction experiments. The IR spectra of a number of these ruthenium alkynyls display multiple ν(C≡C) bands in the IR spectra, which are rationalized in terms of putative conformational isomers, whose calculated infrared stretching frequencies are comparable to those obtained experimentally. The mononuclear alkynyl ruthenium complexes undergo reversible one-electron oxidations centered largely on the alkynyl ligands, as inferred from the significant shift in ν(C≡C) frequency on oxidation, while the binuclear complex [Ru{C≡C-4-bpy-κ<sup>2</sup>-N,N′-RuClCp}(dppe)Cp∗]<sup>+</sup> undergoes initial oxidation at the very electron rich {RuCl(bpy)Cp} fragment, causing only a small change in ν(C≡C). A combination of IR and UV-vis spectroelectrochemical experiments, supported by quantum chemical calculations on a selected range of conformers, led to the classification of [Ru{C≡C-4-bpy-κ<sup>2</sup>-N,N′-RuClCp}(dppe)Cp∗]<sup>+</sup> as a weakly coupled class II mixed-valence compound (H<sub>ab</sub> = 306 cm<sup>-1</sup>). These results indicate that there is improved electronic communication through the 4-ethynyl-2,2′-bipyridyl ligand in comparison to the analogous 5-ethynyl-2,2′-bipyridyl complexes (H<sub>ab</sub> = 17 cm<sup>-1</sup>).</p>

Topics
  • impedance spectroscopy
  • compound
  • x-ray diffraction
  • experiment
  • rhenium
  • Ruthenium