Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Olivier-Bourbigou, Hélène

  • Google
  • 1
  • 10
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Monocationic Bis-Alkyl and Bis-Allyl Yttrium Complexes: Synthesis, 89Y NMR Characterization, Ethylene or Isoprene Polymerization, and Modeling11citations

Places of action

Chart of shared publication
Bouhali, Aymane El
1 / 1 shared
Boisson, Christophe
1 / 6 shared
Breuil, Pierre-Alain
1 / 1 shared
Perrin, Lionel
1 / 5 shared
Thuilliez, Julien
1 / 3 shared
Oswald, Alexis
1 / 1 shared
Vaultier, Florent
1 / 1 shared
Taoufik, Mostafa
1 / 1 shared
Chefdeville, Emmanuel
1 / 3 shared
Mallmann, Aimery De
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Bouhali, Aymane El
  • Boisson, Christophe
  • Breuil, Pierre-Alain
  • Perrin, Lionel
  • Thuilliez, Julien
  • Oswald, Alexis
  • Vaultier, Florent
  • Taoufik, Mostafa
  • Chefdeville, Emmanuel
  • Mallmann, Aimery De
OrganizationsLocationPeople

article

Monocationic Bis-Alkyl and Bis-Allyl Yttrium Complexes: Synthesis, 89Y NMR Characterization, Ethylene or Isoprene Polymerization, and Modeling

  • Bouhali, Aymane El
  • Olivier-Bourbigou, Hélène
  • Boisson, Christophe
  • Breuil, Pierre-Alain
  • Perrin, Lionel
  • Thuilliez, Julien
  • Oswald, Alexis
  • Vaultier, Florent
  • Taoufik, Mostafa
  • Chefdeville, Emmanuel
  • Mallmann, Aimery De
Abstract

Monocationic complexes of yttrium with various bis-alkyl and bis-allyl ligands Y(CH2SiMe2Ph)2(THF)4][B(C6F5)4], [Y(CH2C6H4NMe2)2(THF)2][B(C6F5)4], and [Y[1,3-(SiMe3)2C3H3]2(THF)2][B(C6F5)4] have been prepared by protonolysis of the corresponding homoleptic tris-alkyl or -allyl complexes using the anilinium borate salt [PhNMe2H][B(C6F5)4]. The resulting ion-pair complexes have been isolated and characterized by different techniques such as elemental analysis, 1H, 13C, and 89Y NMR, and EXAFS for the allyl cationic complex [Y[1,3-(SiMe3)2C3H3]2(THF)2][B(C6F5)4]. More specifically, a 1H-coupled 89Y INEPT sequence has been developed in order to quantify the metal/alkyl ligand stoichiometry of both synthesized neutral tris-alkyl and cationic bis-alkyl yttrium complexes. The activity of the cationic complexes toward ethylene and isoprene homopolymerization has been assessed. In presence of TiBA, polyethylene was produced with activities ranging from 6 to 26 kgPE molY–1 h–1 bar–1. The molar mass of the yielded polymers shows a bimodal distribution. Under similar conditions, polyisoprene was produced up to full conversion of the monomer. The microstructure of the yielded polyisoprene displayed mainly cis-1,4-units (ca. 60–70%) and 3,4-units (ca. 20–30%). Only a few percent of trans-1,4 units was revealed.

Topics
  • microstructure
  • polymer
  • Yttrium
  • Nuclear Magnetic Resonance spectroscopy
  • chemical ionisation
  • elemental analysis
  • extended X-ray absorption fine structure spectroscopy