Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ares, Pablo

  • Google
  • 8
  • 43
  • 684

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2020Piezoelectricity in Monolayer Hexagonal Boron Nitride143citations
  • 2020Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe2/WSe2 Heterobilayers with Transfer-Induced Layer Corrugation34citations
  • 2020The role of defects in the properties of functional coordination polymers16citations
  • 2020Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe 2 /WSe 2 Heterobilayers with Transfer-Induced Layer Corrugation34citations
  • 2019AFM Manipulation of Gold Nanowires To Build Electrical Circuits49citations
  • 2018High Electrical Conductivity of Single Metal–Organic Chains14citations
  • 2017Few-layer antimonene by liquid-phase exfoliationcitations
  • 2016Few-Layer Antimonene by Liquid-Phase Exfoliation394citations

Places of action

Chart of shared publication
Wang, Yi Bo
1 / 1 shared
Roldán, Rafael
1 / 5 shared
Cea, Tommaso
1 / 1 shared
Woods, Colin
1 / 1 shared
Novoselov, Konstantin
1 / 6 shared
Holwill, Matthew
1 / 3 shared
Fumagalli, Laura
3 / 9 shared
Andreeva, Daria V.
1 / 8 shared
Guinea, Francisco
1 / 13 shared
Nevison-Andrews, Harriet
2 / 2 shared
Godde, Tillmann
2 / 2 shared
Alexeev, Evgeny M.
2 / 4 shared
Hobbs, Jamie K.
2 / 3 shared
Mullin, Nic
2 / 2 shared
Wang, Yibo
2 / 3 shared
Skrypka, Oleksandr
2 / 3 shared
Hague, Lee
2 / 5 shared
Kozikov, Aleksey
2 / 6 shared
Tartakovskii, Alexander I.
2 / 9 shared
Novoselov, Kostya S.
2 / 26 shared
Castillo-Blas, Celia
1 / 16 shared
Montoro, Carmen
1 / 8 shared
Amo-Ochoa, Pilar
2 / 5 shared
Platero-Prats, Ana E.
1 / 7 shared
Zamora, Félix
2 / 5 shared
Conesa, Javier
1 / 1 shared
Gomez-Navarro, Cristina
1 / 1 shared
Moreno-Moreno, Miriam
1 / 2 shared
Zamora, Felix
3 / 12 shared
Gomez-Herrero, Julio
3 / 4 shared
Moreno, Consuelo
1 / 1 shared
Soler, Jose M.
1 / 1 shared
Palacios, Juan Jose
1 / 1 shared
Hirsch, Andreas
2 / 31 shared
Abellán, Gonzalo
1 / 4 shared
Varela, Maria
2 / 6 shared
Gómez-Herrero, Julio
1 / 1 shared
Maultzsch, Janina
2 / 8 shared
Rodriguez-San-Miguel, David
2 / 2 shared
Gibaja, Carlos
2 / 3 shared
Gillen, Roland
2 / 3 shared
Hauke, Frank
2 / 18 shared
Abellan, Gonzalo
1 / 1 shared
Chart of publication period
2020
2019
2018
2017
2016

Co-Authors (by relevance)

  • Wang, Yi Bo
  • Roldán, Rafael
  • Cea, Tommaso
  • Woods, Colin
  • Novoselov, Konstantin
  • Holwill, Matthew
  • Fumagalli, Laura
  • Andreeva, Daria V.
  • Guinea, Francisco
  • Nevison-Andrews, Harriet
  • Godde, Tillmann
  • Alexeev, Evgeny M.
  • Hobbs, Jamie K.
  • Mullin, Nic
  • Wang, Yibo
  • Skrypka, Oleksandr
  • Hague, Lee
  • Kozikov, Aleksey
  • Tartakovskii, Alexander I.
  • Novoselov, Kostya S.
  • Castillo-Blas, Celia
  • Montoro, Carmen
  • Amo-Ochoa, Pilar
  • Platero-Prats, Ana E.
  • Zamora, Félix
  • Conesa, Javier
  • Gomez-Navarro, Cristina
  • Moreno-Moreno, Miriam
  • Zamora, Felix
  • Gomez-Herrero, Julio
  • Moreno, Consuelo
  • Soler, Jose M.
  • Palacios, Juan Jose
  • Hirsch, Andreas
  • Abellán, Gonzalo
  • Varela, Maria
  • Gómez-Herrero, Julio
  • Maultzsch, Janina
  • Rodriguez-San-Miguel, David
  • Gibaja, Carlos
  • Gillen, Roland
  • Hauke, Frank
  • Abellan, Gonzalo
OrganizationsLocationPeople

article

AFM Manipulation of Gold Nanowires To Build Electrical Circuits

  • Gomez-Navarro, Cristina
  • Moreno-Moreno, Miriam
  • Ares, Pablo
  • Zamora, Felix
  • Gomez-Herrero, Julio
  • Moreno, Consuelo
Abstract

We introduce scanning-probe-assisted nanowire circuitry (SPANC) as a new method to fabricate electrodes for the characterization of electrical transport properties at the nanoscale. SPANC uses an atomic force microscope (AFM) to manipulate nanowires to create complex and highly conductive nanostructures (paths) that work as nanoelectrodes, allowing connectivity and electrical characterization of other nano-objects. The paths are formed by the spontaneous cold welding of gold nanowires upon mechanical contact, leading to an excellent contact resistance of ∼9 Ω/junction. SPANC is an easy to use and cost-effective technique that fabricates clean nanodevices. Hence, this new method can complement and/or be an alternative to other well-established methods to fabricate nanocircuits such as electron beam lithography (EBL). The circuits made by SPANC are easily reconfigurable, and their fabrication does not require the use of polymers and chemicals. In this work, we present a few examples that illustrate the capabilities of this method, allowing robust device fabrication and electrical characterization of several nano-objects with sizes down to ∼10 nm, well below the current smallest size able to be contacted in a device using the standard available technology (∼30 nm). Importantly, we also provide the first experimental determination of the sheet resistance of thin antimonene flakes.

Topics
  • impedance spectroscopy
  • polymer
  • atomic force microscopy
  • gold
  • lithography