Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Siday, Thomas

  • Google
  • 3
  • 33
  • 77

University of Birmingham

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Contrasting ultra-low frequency Raman and infrared modes in emerging metal halides for photovoltaics3citations
  • 2024Data archive of "In situ nanoscopy of single-grain nanomorphology and ultrafast carrier dynamics in metal halide perovskites"citations
  • 2019Terahertz Detection with Perfectly-Absorbing Photoconductive Metasurface74citations

Places of action

Chart of shared publication
Johnston, Michael B.
2 / 47 shared
Yan, Siyu
1 / 3 shared
Lim, Vj
1 / 1 shared
Righetto, Marcello
1 / 13 shared
Herz, Lm
1 / 40 shared
Putland, Benjamin
1 / 1 shared
Snaith, Hj
1 / 53 shared
Patel, Jb
1 / 20 shared
Kovalenko, Maksym
1 / 8 shared
Peng, Jiali
1 / 6 shared
Bein, Thomas
1 / 27 shared
Kominko, Yuliia
1 / 1 shared
Lin, Qianqian
1 / 6 shared
Sirtl, Mt
1 / 1 shared
Mccall, Kyle M.
1 / 8 shared
Nerreter, Svenja
1 / 1 shared
Schiegl, Felix
1 / 1 shared
Meineke, Christian
1 / 2 shared
Herz, Laura M.
1 / 35 shared
Huber, Rupert
1 / 5 shared
Yuan, Qimu
1 / 1 shared
Sandner, Fabian
1 / 1 shared
Lohmann, Kilian B.
1 / 2 shared
Zizlsperger, Martin
1 / 2 shared
Gerasimenko, Yaroslav A.
1 / 1 shared
Huber, Markus A.
1 / 2 shared
Harris, Charles Thomas
1 / 2 shared
Luk, Ting Shan
1 / 1 shared
Reno, John L.
1 / 1 shared
Brener, Igal
1 / 1 shared
Vabishchevich, Polina P.
1 / 1 shared
Hale, Lucy
1 / 1 shared
Mitrofanov, Oleg
1 / 3 shared
Chart of publication period
2024
2019

Co-Authors (by relevance)

  • Johnston, Michael B.
  • Yan, Siyu
  • Lim, Vj
  • Righetto, Marcello
  • Herz, Lm
  • Putland, Benjamin
  • Snaith, Hj
  • Patel, Jb
  • Kovalenko, Maksym
  • Peng, Jiali
  • Bein, Thomas
  • Kominko, Yuliia
  • Lin, Qianqian
  • Sirtl, Mt
  • Mccall, Kyle M.
  • Nerreter, Svenja
  • Schiegl, Felix
  • Meineke, Christian
  • Herz, Laura M.
  • Huber, Rupert
  • Yuan, Qimu
  • Sandner, Fabian
  • Lohmann, Kilian B.
  • Zizlsperger, Martin
  • Gerasimenko, Yaroslav A.
  • Huber, Markus A.
  • Harris, Charles Thomas
  • Luk, Ting Shan
  • Reno, John L.
  • Brener, Igal
  • Vabishchevich, Polina P.
  • Hale, Lucy
  • Mitrofanov, Oleg
OrganizationsLocationPeople

article

Terahertz Detection with Perfectly-Absorbing Photoconductive Metasurface

  • Siday, Thomas
  • Harris, Charles Thomas
  • Luk, Ting Shan
  • Reno, John L.
  • Brener, Igal
  • Vabishchevich, Polina P.
  • Hale, Lucy
  • Mitrofanov, Oleg
Abstract

<p>Terahertz (THz) photoconductive devices are used for generation, detection, and modulation of THz waves, and they rely on the ability to switch electrical conductivity on a subpicosecond time scale using optical pulses. However, fast and efficient conductivity switching with high contrast has been a challenge, because the majority of photoexcited charge carriers in the switch do not contribute to the photocurrent due to fast recombination. Here, we improve efficiency of electrical conductivity switching using a network of electrically connected nanoscale GaAs resonators, which form a perfectly absorbing photoconductive metasurface. We achieve perfect absorption without incorporating metallic elements, by breaking the symmetry of cubic Mie resonators. As a result, the metasurface can be switched between conductive and resistive states with extremely high contrast using an unprecedentedly low level of optical excitation. We integrate this metasurface with a THz antenna to produce an efficient photoconductive THz detector. The perfectly absorbing photoconductive metasurface opens paths for developing a wide range of efficient optoelectronic devices, where required optical and electronic properties are achieved through nanostructuring the resonator network.</p>

Topics
  • electrical conductivity