Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Emori, Satoru

  • Google
  • 2
  • 31
  • 64

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Ultralow Damping in Nanometer-Thick Epitaxial Spinel Ferrite Thin Films64citations
  • 2017Coexistence of Low Damping and Strong Magnetoelastic Coupling in Epitaxial Spinel Ferrite Thin Filmscitations

Places of action

Chart of shared publication
Klewe, Christoph
1 / 9 shared
Khodadadi, Behrouz
1 / 2 shared
Arenholz, Elke
2 / 17 shared
Shafer, Padraic
2 / 6 shared
Hwang, Harold Y.
1 / 16 shared
Yi, Di
1 / 2 shared
Balakrishnan, Purnima P.
1 / 3 shared
Urwin, Brittany T.
1 / 1 shared
Crossley, Sam
1 / 2 shared
Howe, Brandon M.
2 / 2 shared
Wisser, Jacob J.
1 / 1 shared
Mahalingam, Krishnamurthy
2 / 2 shared
Ndiaye, Alpha T.
2 / 13 shared
Mcconney, Michael E.
1 / 2 shared
Meng, Keng-Yuan
1 / 1 shared
Mahat, Sushant
1 / 1 shared
Li, Dongyao
1 / 1 shared
Haugstad, Greg
1 / 4 shared
Alaan, Urusa S.
1 / 2 shared
Cahill, David G.
1 / 7 shared
Gray, Matthew T.
1 / 1 shared
Hill, Madelyn
1 / 1 shared
Schmitt, Maxwell
1 / 1 shared
Sun, Nian X.
1 / 2 shared
Bornstein, Alexander C.
1 / 1 shared
Jander, Albrecht
1 / 1 shared
Peoples, Joseph
1 / 1 shared
Jeon, Hyung-Min
1 / 1 shared
Dhagat, Pallavi
1 / 1 shared
Yang, Fengyuan
1 / 2 shared
Gray, Benjamin A.
1 / 1 shared
Chart of publication period
2018
2017

Co-Authors (by relevance)

  • Klewe, Christoph
  • Khodadadi, Behrouz
  • Arenholz, Elke
  • Shafer, Padraic
  • Hwang, Harold Y.
  • Yi, Di
  • Balakrishnan, Purnima P.
  • Urwin, Brittany T.
  • Crossley, Sam
  • Howe, Brandon M.
  • Wisser, Jacob J.
  • Mahalingam, Krishnamurthy
  • Ndiaye, Alpha T.
  • Mcconney, Michael E.
  • Meng, Keng-Yuan
  • Mahat, Sushant
  • Li, Dongyao
  • Haugstad, Greg
  • Alaan, Urusa S.
  • Cahill, David G.
  • Gray, Matthew T.
  • Hill, Madelyn
  • Schmitt, Maxwell
  • Sun, Nian X.
  • Bornstein, Alexander C.
  • Jander, Albrecht
  • Peoples, Joseph
  • Jeon, Hyung-Min
  • Dhagat, Pallavi
  • Yang, Fengyuan
  • Gray, Benjamin A.
OrganizationsLocationPeople

article

Ultralow Damping in Nanometer-Thick Epitaxial Spinel Ferrite Thin Films

  • Klewe, Christoph
  • Khodadadi, Behrouz
  • Arenholz, Elke
  • Shafer, Padraic
  • Hwang, Harold Y.
  • Yi, Di
  • Balakrishnan, Purnima P.
  • Urwin, Brittany T.
  • Crossley, Sam
  • Howe, Brandon M.
  • Wisser, Jacob J.
  • Mahalingam, Krishnamurthy
  • Ndiaye, Alpha T.
  • Emori, Satoru
Abstract

Pure spin currents, unaccompanied by dissipative charge flow, are essential for realizing energy-efficient nanomagnetic information and communications devices. Thin-film magnetic insulators have been identified as promising materials for spin-current technology because they are thought to exhibit lower damping compared with their metallic counterparts. However, insulating behavior is not a sufficient requirement for low damping, as evidenced by the very limited options for low-damping insulators. Here, we demonstrate a new class of nanometer-thick ultralow-damping insulating thin films based on design criteria that minimize orbital angular momentum and structural disorder. Specifically, we show ultralow damping in <20 nm thick spinel-structure magnesium aluminum ferrite (MAFO), in which magnetization arises from Fe3+ ions with zero orbital angular momentum. These epitaxial MAFO thin films exhibit a Gilbert damping parameter of ∼0.0015 and negligible inhomogeneous linewidth broadening, resulting in narrow half width at half-maximum linewidths of ∼0.6 mT around 10 GHz. Our findings offer an attractive thin-film platform for enabling integrated insulating spintronics.

Topics
  • impedance spectroscopy
  • thin film
  • Magnesium
  • Magnesium
  • aluminium
  • magnetization