Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Birkbeck, J.

  • Google
  • 4
  • 41
  • 340

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2018Unusual Suppression of the Superconducting Energy Gap and Critical Temperature in Atomically Thin NbSe2116citations
  • 2017Edge currents shunt the insulating bulk in gapped graphene97citations
  • 2017Edge currents shunt the insulating bulk in gapped graphene97citations
  • 2015Nacre-nanomimetics: Strong, Stiff & Plastic30citations

Places of action

Chart of shared publication
Watanabe, K.
3 / 26 shared
Geim, Andre
1 / 12 shared
Zhu, M.
1 / 9 shared
Forro, L.
1 / 5 shared
Yin, J.
1 / 4 shared
Khestanova, E.
1 / 6 shared
Gorbachev, Roman V.
1 / 11 shared
Ghazaryan, D.
1 / 1 shared
Yu, G. L.
2 / 3 shared
Grigorieva, Irina
1 / 11 shared
Taniguchi, T.
3 / 17 shared
Berger, H.
1 / 10 shared
Cao, Y.
1 / 12 shared
Mishchenko, Artem
2 / 11 shared
Polini, M.
2 / 5 shared
Prance, Jonathan
1 / 1 shared
Bandurin, D. A.
1 / 2 shared
Novoselov, K. S.
1 / 10 shared
Zhu, M. J.
1 / 2 shared
Kretinin, A. V.
1 / 1 shared
Geim, A. K.
1 / 10 shared
Thompson, Michael
1 / 5 shared
Vera-Marun, I. J.
1 / 5 shared
Hu, S.
2 / 9 shared
Shalom, M. Ben
1 / 1 shared
K., Geim A.
1 / 1 shared
J., Vera-Marun I.
1 / 1 shared
V., Kretinin A.
1 / 1 shared
L., Yu G.
1 / 1 shared
Mishchenko, A.
1 / 3 shared
B., Shalom M.
1 / 1 shared
D., Thompson M.
1 / 1 shared
A., Bandurin D.
1 / 1 shared
S., Novoselov K.
1 / 2 shared
J., Zhu M.
1 / 1 shared
R., Prance J.
1 / 1 shared
De Luca, F.
1 / 7 shared
Menzel, R.
1 / 4 shared
Blaker, Jj
1 / 3 shared
Bismarck, A.
1 / 15 shared
Shaffer, Msp
1 / 29 shared
Chart of publication period
2018
2017
2015

Co-Authors (by relevance)

  • Watanabe, K.
  • Geim, Andre
  • Zhu, M.
  • Forro, L.
  • Yin, J.
  • Khestanova, E.
  • Gorbachev, Roman V.
  • Ghazaryan, D.
  • Yu, G. L.
  • Grigorieva, Irina
  • Taniguchi, T.
  • Berger, H.
  • Cao, Y.
  • Mishchenko, Artem
  • Polini, M.
  • Prance, Jonathan
  • Bandurin, D. A.
  • Novoselov, K. S.
  • Zhu, M. J.
  • Kretinin, A. V.
  • Geim, A. K.
  • Thompson, Michael
  • Vera-Marun, I. J.
  • Hu, S.
  • Shalom, M. Ben
  • K., Geim A.
  • J., Vera-Marun I.
  • V., Kretinin A.
  • L., Yu G.
  • Mishchenko, A.
  • B., Shalom M.
  • D., Thompson M.
  • A., Bandurin D.
  • S., Novoselov K.
  • J., Zhu M.
  • R., Prance J.
  • De Luca, F.
  • Menzel, R.
  • Blaker, Jj
  • Bismarck, A.
  • Shaffer, Msp
OrganizationsLocationPeople

article

Unusual Suppression of the Superconducting Energy Gap and Critical Temperature in Atomically Thin NbSe2

  • Watanabe, K.
  • Geim, Andre
  • Zhu, M.
  • Forro, L.
  • Yin, J.
  • Khestanova, E.
  • Gorbachev, Roman V.
  • Ghazaryan, D.
  • Yu, G. L.
  • Grigorieva, Irina
  • Taniguchi, T.
  • Berger, H.
  • Cao, Y.
  • Birkbeck, J.
  • Mishchenko, Artem
Abstract

It is well-known that superconductivity in thin films is generally suppressed with decreasing thickness. This suppression is normally governed by either disorder-induced localization of Cooper pairs, weakening of Coulomb screening, or generation and unbinding of vortex–antivortex pairs as described by the Berezinskii–Kosterlitz–Thouless (BKT) theory. Defying general expectations, few-layer NbSe2, an archetypal example of ultrathin superconductors, has been found to remain superconducting down to monolayer thickness. Here, we report measurements of both the superconducting energy gap Δ and critical temperature TC in high-quality monocrystals of few-layer NbSe2, using planar-junction tunneling spectroscopy and lateral transport. We observe a fully developed gap that rapidly reduces for devices with the number of layers N ≤ 5, as does their TC. We show that the observed reduction cannot be explained by disorder, and the BKT mechanism is also excluded by measuring its transition temperature that for all N remains very close to TC. We attribute the observed behavior to changes in the electronic band structure predicted for mono- and bi- layer NbSe2 combined with inevitable suppression of the Cooper pair density at the superconductor-vacuum interface. Our experimental results for N > 2 are in good agreement with the dependences of Δ and TC expected in the latter case while the effect of band-structure reconstruction is evidenced by a stronger suppression of Δ and the disappearance of its anisotropy for N = 2. The spatial scale involved in the surface suppression of the density of states is only a few angstroms but cannot be ignored for atomically thin superconductors.

Topics
  • density
  • impedance spectroscopy
  • surface
  • theory
  • thin film
  • band structure
  • superconductivity
  • superconductivity
  • critical temperature