People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Massabuau, Fcp
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Constant Photocurrent Method to Probe the Sub‐Bandgap Absorption in Wide Bandgap Semiconductor Films: The Case of α‐Ga<sub>2</sub>O<sub>3</sub>citations
- 2024Constant Photocurrent Method to Probe the Sub-Bandgap Absorption in Wide Bandgap Semiconductor Films: The Case of α-Ga 2 O 3
- 2021Defect structures in (001) zincblende GaN/3CSiC nucleation layerscitations
- 2021Defect structures in (001) zincblende GaN/3C-SiC nucleation layerscitations
- 2021Directly correlated microscopy of trench defects in InGaN quantum wellscitations
- 2020Piezoelectric III-V and II-VI semiconductorscitations
- 2020Integrated wafer scale growth of single crystal metal films and high quality graphenecitations
- 2020Dislocations as channels for the fabrication of sub-surface porous GaN by electrochemical etchingcitations
- 2019Investigation of MOVPE-grown zincblende GaN nucleation layers on 3CSiC/Si substratescitations
- 2019Thick adherent diamond films on AlN with low thermal barrier resistancecitations
- 2019Low temperature growth and optical properties of α-Ga2O3 deposited on sapphire by plasma enhanced atomic layer depositioncitations
- 2017Mechanisms preventing trench defect formation in InGaN/GaN quantum well structures using hydrogen during GaN barrier growth
- 2017X-ray diffraction analysis of cubic zincblende III-nitrides
- 2017Dislocations in AlGaN: core structure, atom segregation, and optical propertiescitations
- 2014Structure and strain relaxation effects of defects in InxGa1-xN epilayerscitations
- 2014Structure and strain relaxation effects of defects in In x Ga 1-x N epilayers
- 2013Correlations between the morphology and emission properties of trench defects in InGaN/GaN quantum wellscitations
- 2012Morphological, structural, and emission characterization of trench defects in InGaN/GaN quantum well structurescitations
- 2011The effects of Si doping on dislocation movement and tensile stress in GaN filmscitations
Places of action
Organizations | Location | People |
---|
article
Dislocations in AlGaN: core structure, atom segregation, and optical properties
Abstract
We conducted a comprehensive investigation of dislocations in Al0.46Ga0.54N. Using aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopy, the atomic structure and atom distribution at the dislocation core have been examined. We report that the core configuration of dislocations in AlGaN is consistent with that of other materials in the III-Nitride system. However, we observed that the dissociation of mixed-type dislocations is impeded by alloying GaN with AlN, which is confirmed by our experimental observation of Ga and Al atom segregation in the tensile and compressive parts of the dislocations, respectively. Investigation of the optical properties of the dislocations shows that the atom segregation at dislocations has no significant effect on the intensity recorded by cathodoluminescence in the vicinity of the dislocations. These results are in contrast with the case of dislocations in In0.09Ga0.91N where segregation of In and Ga atoms also occurs but results in carrier localization limiting non-radiative recombination at the dislocation. This study therefore sheds light on why InGaN-based devices are generally more resilient to dislocations than their AlGaN-based counterparts.