People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sikanen, Tiina Marjukka
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2020Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devicescitations
- 2019Metallization of Organically Modified Ceramics for Microfluidic Electrochemical Assayscitations
- 2017Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitationcitations
Places of action
Organizations | Location | People |
---|
article
Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation
Abstract
<p>Although a number of techniques exist for generating structured organic nanocomposites, it is still challenging to fabricate them in a controllable, yet universal and scalable manner. In this work, a microfluidic platform, exploiting superfast (milliseconds) time intervals between sequential nanoprecipitation processes, has been developed for high-throughput production of structured core/shell nanocomposites. The extremely short time interval between the sequential nanoprecipitation processes, facilitated by the multiplexed microfluidic design, allows us to solve the instability issues of nanocomposite cores without using any stabilizers. Beyond high throughput production rate (similar to 700 g/day on a single device), the generated core/shell nanocomposites harness the inherent ultrahigh drug loading degree and enhanced payload dissolution kinetics of drug nanocrystals and the controlled drug release from polymer-based nanopartides.</p>