People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Weatherup, Rs
University of Oxford
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024The Role of Salt Concentration in Stabilizing Charged Ni-Rich Cathode Interfaces in Li-ion Batteries
- 2024Removal and Reoccurrence of LLZTO Surface Contaminants under Glovebox Conditionscitations
- 2023Effect of current density on the solid electrolyte interphase formation at the lithium∣Li6PS5Cl interfacecitations
- 2022Gently does it!: in situ preparation of alkali metal–solid electrolyte interfaces for photoelectron spectroscopycitations
- 2022Effect of current density on the solid electrolyte interphase formation at the lithium∣Li6PS5Cl interfacecitations
- 2022In situ and operando characterisation of Li metal – Solid electrolyte interfacescitations
- 2022Electrolyte reactivity at the charged Ni-rich cathode interface and degradation in Li-ion batteriescitations
- 2022Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries.
- 2022Electronic interactions and stability issues at the copper-graphene interface in air and in alkaline solution under electrochemical controlcitations
- 2020Understanding metal organic chemical vapour deposition of monolayer WS2: the enhancing role of au substrate for simple organosulfur precursorscitations
- 2020The origin of chemical inhomogeneity in garnet electrolytes and its impact on the electrochemical performancecitations
- 2020Graphene-passivated nickel as an efficient hole-injecting electrode for large area organic semiconductor devicescitations
- 2020Understanding metal organic chemical vapour deposition of monolayer WS<sub>2</sub>: the enhancing role of Au substrate for simple organosulfur precursors.
- 2019Reactive intercalation and oxidation at the buried graphene-germanium interface
- 2018Compressive Behavior and Failure Mechanisms of Freestanding and Composite 3D Graphitic Foamscitations
- 2018Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitridecitations
- 2017Chemical vapour deposition of freestanding sub-60 nm graphene gyroidscitations
- 2017Low temperature growth of fully covered single-layer graphene using a CoCu catalystcitations
- 2016In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocompositescitations
- 2016In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foilscitations
- 2016Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposurecitations
- 2015Protecting nickel with graphene spin-filtering membranescitations
- 2015Spatial variability in large area single and few-layer CVD graphene
- 2014The role of the sp2:sp3 substrate content in carbon supported nanotube growthcitations
- 2014The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditionscitations
- 2014Low temperature growth of carbon nanotubes on tetrahedral amorphous carbon using Fe-Cu catalystcitations
- 2014Nitrogen controlled iron catalyst phase during carbon nanotube growthcitations
- 2012The phase of iron catalyst nanoparticles during carbon nanotube growthcitations
Places of action
Organizations | Location | People |
---|
article
In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils
Abstract
The dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain. The facets that define the domain shapes lie normal to slow growth directions, which are determined by the interfacial mobility when attachment to domain edges is rate-limiting, as well as anisotropy in surface diffusion as diffusion becomes rate-limiting. Our observations and analysis thus reveal that the structure of CVD graphene films is intimately linked to that of the underlying polycrystalline catalyst, with both interfacial mobility and diffusional anisotropy depending on the presence of step edges and grain boundaries. The growth model developed serves as a general framework for understanding and optimizing the growth of 2D materials on polycrystalline catalysts. ; St. John’s College, Cambridge (Research Fellowship), European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie Individual Fellowship (Global) under Grant ID: ARTIST (no. 656870)), National Science Foundation (graduate research fellowship (DGE-1324585)), European Research Council (Grant ID: InsituNANO (no. 279342)), EUFP7 Work Programme (Grant ID: GRAFOL (project reference 285275)) , Engineering and Physical Sciences Research Council (Grant ID: GRAPHTED (project reference EP/K016636/1)), Strategic Capability programme of the National Measurement System of the U.K. Department of Business, Innovation, and Skills (project no. 119376)