People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Deppert, Knut
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (41/41 displayed)
- 2023Insights into the Synthesis Mechanisms of Ag-Cu3P-GaP Multicomponent Nanoparticlescitations
- 2021Dynamic Processes in Metal-Semiconductor Nanoparticle Heterostructures
- 2021Sintering Mechanism of Core@Shell Metal@Metal-Oxide Nanoparticlescitations
- 2021Aerotaxycitations
- 2021Synthesis and characterization of Au@Zn core@shell aerosol nanoparticles generated by spark ablation and on-line PVD
- 2020Pseudo-particle continuum modelling of nanowire growth in aerotaxy
- 2020Complex Aerosol Nanostructures: Revealing the Phases from Multivariate Analysis on Elemental Maps Obtained by TEM-EDX
- 2018N-type doping and morphology of GaAs nanowires in Aerotaxycitations
- 2017From plasma to nanoparticlescitations
- 2016GaAsP Nanowires Grown by Aerotaxycitations
- 2016Length Distributions of Nanowires Growing by Surface Diffusioncitations
- 2015In-situ characterization of metal nanoparticles and their organic coatings using laser-vaporization aerosol mass spectrometrycitations
- 2015Surface morphology of Au-free grown nanowires after native oxide removal.citations
- 2013Geometric model for metalorganic vapour phase epitaxy of dense nanowire arrayscitations
- 2012High crystal quality wurtzite-zinc blende heterostructures in metal-organic vapor phase epitaxy-grown GaAs nanowirescitations
- 2012High crystal quality wurtzite-zinc blende heterostructures in metal-organic vapor phase epitaxy-grown GaAs nanowirescitations
- 2011Dynamics of extremely anisotropic etching of InP nanowires by HClcitations
- 2011Crystal structure control in Au-free self-seeded InSb wire growth.citations
- 2011Crystal structure control in Au-free self-seeded InSb wire growth.citations
- 2011Oxidation and reduction of Pd(100) and aerosol-deposited Pd nanoparticlescitations
- 2010High Performance Single Nanowire Tunnel Diodes
- 2010Control of III-V nanowire crystal structure by growth parameter tuningcitations
- 2009Effects of Supersaturation on the Crystal Structure of Gold Seeded III-V Nanowirescitations
- 2008Effects of growth conditions on the crystal structure of gold-seeded GaP nanowirescitations
- 2008Control of GaP and GaAs Nanowire Morphology through Particle and Substrate Chemical Modification.citations
- 2008High Quality InAs/InSb nanowire heterostructrues grown by metalorganic vapour phase epitaxycitations
- 2007Directed growth of branched nanowire structures
- 2007Targeted deposition of Au aerosol nanoparticles on vertical nanowires for the creation of nanotreescitations
- 2006Growth and characterization of defect free GaAs nanowirescitations
- 2006Crystal structure of branched epitaxial III-V nanotreescitations
- 2005A new understanding of au-assisted growth of III-V semiconductor nanowirescitations
- 2005Role of the Au/III-V interaction in the Au-assisted growth of III-V branched nanostructurescitations
- 2004Growth of GaP nanotree structures by sequential seeding of 1D nanowirescitations
- 2004Size- and shape-controlled GaAs nano-whiskers grown by MOVPE: a growth studycitations
- 2003Deposition of aerosol nanoparticles on flat substrate surfacescitations
- 2002One-dimensional heterostructures in semiconductor nanowhiskerscitations
- 2002Approaches to increasing yield in evaporation/condensation nanoparticle generationcitations
- 2002One-dimensional steeplechase for electrons realizedcitations
- 2002Heterointerfaces in III-V semiconductor nanowhiskers
- 2002Size- and composition controlled Au-In nanoalloy aerosol particles
- 2000Single-crystalline tungsten nanoparticles produced by thermal decomposition of tungsten hexacarbonylcitations
Places of action
Organizations | Location | People |
---|
article
GaAsP Nanowires Grown by Aerotaxy
Abstract
<p>We have grown GaAsP nanowires with high optical and structural quality by Aerotaxy, a new continuous gas phase mass production process to grow III-V semiconductor based nanowires. By varying the PH<sub>3</sub>/AsH<sub>3</sub> ratio and growth temperature, size selected GaAs<sub>1-x</sub>P<sub>x</sub> nanowires (80 nm diameter) with pure zinc-blende structure and with direct band gap energies ranging from 1.42 to 1.90 eV (at 300 K), (i.e., 0 ≤ x ≤ 0.43) were grown, which is the energy range needed for creating tandem III-V solar cells on silicon. The phosphorus content in the NWs is shown to be controlled by both growth temperature and input gas phase ratio. The distribution of P in the wires is uniform over the length of the wires and among the wires. This proves the feasibility of growing GaAsP nanowires by Aerotaxy and results indicate that it is a generic process that can be applied to the growth of other III-V semiconductor based ternary nanowires.</p>