People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Persson, Axel R.
Linköping University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Cathodoluminescence investigations of dark-line defects in platelet-based InGaN nano-LED structurescitations
- 2023Observations of very fast electron traps at SiC/high-κ dielectric interfacescitations
- 2023Observations of very fast electron traps at SiC/high-κ dielectric interfacescitations
- 2022Epitaxial growth of β -Ga 2 O 3 by hot-wall MOCVDcitations
- 2021Aerotaxycitations
- 2020Complex Aerosol Nanostructures: Revealing the Phases from Multivariate Analysis on Elemental Maps Obtained by TEM-EDX
- 2019Kinetics of Au-Ga Droplet Mediated Decomposition of GaAs Nanowirescitations
- 2019Observing growth under confinementcitations
- 2018N-type doping and morphology of GaAs nanowires in Aerotaxycitations
- 2018Electron Tomography Reveals the Droplet Covered Surface Structure of Nanowires Grown by Aerotaxycitations
- 2016GaAsP Nanowires Grown by Aerotaxycitations
Places of action
Organizations | Location | People |
---|
article
GaAsP Nanowires Grown by Aerotaxy
Abstract
<p>We have grown GaAsP nanowires with high optical and structural quality by Aerotaxy, a new continuous gas phase mass production process to grow III-V semiconductor based nanowires. By varying the PH<sub>3</sub>/AsH<sub>3</sub> ratio and growth temperature, size selected GaAs<sub>1-x</sub>P<sub>x</sub> nanowires (80 nm diameter) with pure zinc-blende structure and with direct band gap energies ranging from 1.42 to 1.90 eV (at 300 K), (i.e., 0 ≤ x ≤ 0.43) were grown, which is the energy range needed for creating tandem III-V solar cells on silicon. The phosphorus content in the NWs is shown to be controlled by both growth temperature and input gas phase ratio. The distribution of P in the wires is uniform over the length of the wires and among the wires. This proves the feasibility of growing GaAsP nanowires by Aerotaxy and results indicate that it is a generic process that can be applied to the growth of other III-V semiconductor based ternary nanowires.</p>