Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Raja, Shilpa N.

  • Google
  • 1
  • 12
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Mechanisms of Local Stress Sensing in Multifunctional Polymer Films Using Fluorescent Tetrapod Nanocrystals25citations

Places of action

Chart of shared publication
Ercius, Peter
1 / 5 shared
Powers, Alexander
1 / 1 shared
Olson, Andrew C. K.
1 / 1 shared
Du, Daniel X.
1 / 1 shared
Alivisatos, A. Paul
1 / 6 shared
Lin, Liwei
1 / 2 shared
Xu, Ting
1 / 4 shared
Govindjee, Sanjay
1 / 1 shared
Wang, Lin-Wang
1 / 1 shared
Zherebetskyy, Danylo
1 / 1 shared
Ritchie, Robert O.
1 / 13 shared
Wu, Siva
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Ercius, Peter
  • Powers, Alexander
  • Olson, Andrew C. K.
  • Du, Daniel X.
  • Alivisatos, A. Paul
  • Lin, Liwei
  • Xu, Ting
  • Govindjee, Sanjay
  • Wang, Lin-Wang
  • Zherebetskyy, Danylo
  • Ritchie, Robert O.
  • Wu, Siva
OrganizationsLocationPeople

article

Mechanisms of Local Stress Sensing in Multifunctional Polymer Films Using Fluorescent Tetrapod Nanocrystals

  • Ercius, Peter
  • Powers, Alexander
  • Olson, Andrew C. K.
  • Du, Daniel X.
  • Alivisatos, A. Paul
  • Lin, Liwei
  • Xu, Ting
  • Govindjee, Sanjay
  • Wang, Lin-Wang
  • Raja, Shilpa N.
  • Zherebetskyy, Danylo
  • Ritchie, Robert O.
  • Wu, Siva
Abstract

Nanoscale stress-sensing can be used across fields ranging from detection of incipient cracks in structural mechanics to monitoring forces in biological tissues. We demonstrate how tetrapod quantum dots (tQDs) embedded in block copolymers act as sensors of tensile/compressive stress. Remarkably, tQDs can detect their own composite dispersion and mechanical properties with a switch in optomechanical response when tQDs are in direct contact. Using experimental characterizations, atomistic simulations and finite-element analyses, we show that under tensile stress, densely packed tQDs exhibit a photoluminescence peak shifted to higher energies ("blue-shift") due to volumetric compressive stress in their core; loosely packed tQDs exhibit a peak shifted to lower energies ("red-shift") from tensile stress in the core. The stress shifts result from the tQD's unique branched morphology in which the CdS arms act as antennas that amplify the stress in the CdSe core. Our nanocomposites exhibit excellent cyclability and scalability with no degraded properties of the host polymer. Colloidal tQDs allow sensing in many materials to potentially enable autoresponsive, smart structural nanocomposites that self-predict upcoming fracture.

Topics
  • nanocomposite
  • dispersion
  • photoluminescence
  • simulation
  • crack
  • copolymer
  • block copolymer
  • quantum dot