Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pandey, Mohnish

  • Google
  • 10
  • 20
  • 569

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2019Shining Light on Sulfide Perovskites: LaYS 3 Material Properties and Solar Cells41citations
  • 2019Shining Light on Sulfide Perovskites: LaYS3 Material Properties and Solar Cells41citations
  • 2018Computational Screening of Light-absorbing Materials for Photoelectrochemical Water Splitting2citations
  • 2017Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS 3123citations
  • 2017Band structure engineered layered metals for low-loss plasmonics73citations
  • 2017Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS3123citations
  • 2016Atomically Thin Ordered Alloys of Transition Metal Dichalcogenides: Stability and Band Structures18citations
  • 2016Defect-Tolerant Monolayer Transition Metal Dichalcogenides125citations
  • 2015Band-gap engineering of functional perovskites through quantum confinement and tunneling17citations
  • 2013Hydroxylation induced stabilization of near-surface rocksalt nanostructure on wurtzite ZnO structure6citations

Places of action

Chart of shared publication
Stenger, Nicolas
2 / 14 shared
Jacobsen, Karsten Wedel
8 / 30 shared
Geisler, Mathias
1 / 4 shared
Crovetto, Andrea
4 / 38 shared
Hansen, Ole
4 / 83 shared
Labram, John G.
2 / 4 shared
Chorkendorff, Ib
4 / 97 shared
Vesborg, Peter Christian Kjærgaard
4 / 16 shared
Seger, Brian
4 / 16 shared
Watts, Lowell
2 / 2 shared
Nielsen, Rasmus
2 / 4 shared
Styrk-Geisler, Mathias
1 / 5 shared
Castelli, Ivano Eligio
2 / 19 shared
Kuhar, Korina
4 / 4 shared
Thygesen, Kristian Sommer
1 / 15 shared
Gjerding, Morten Niklas
1 / 3 shared
Thygesen, Ks
5 / 36 shared
Rasmussen, Filip Anselm
1 / 5 shared
Olsen, Thomas
1 / 7 shared
Pala, Raj Ganesh S.
1 / 1 shared
Chart of publication period
2019
2018
2017
2016
2015
2013

Co-Authors (by relevance)

  • Stenger, Nicolas
  • Jacobsen, Karsten Wedel
  • Geisler, Mathias
  • Crovetto, Andrea
  • Hansen, Ole
  • Labram, John G.
  • Chorkendorff, Ib
  • Vesborg, Peter Christian Kjærgaard
  • Seger, Brian
  • Watts, Lowell
  • Nielsen, Rasmus
  • Styrk-Geisler, Mathias
  • Castelli, Ivano Eligio
  • Kuhar, Korina
  • Thygesen, Kristian Sommer
  • Gjerding, Morten Niklas
  • Thygesen, Ks
  • Rasmussen, Filip Anselm
  • Olsen, Thomas
  • Pala, Raj Ganesh S.
OrganizationsLocationPeople

article

Defect-Tolerant Monolayer Transition Metal Dichalcogenides

  • Jacobsen, Karsten Wedel
  • Pandey, Mohnish
  • Thygesen, Ks
  • Rasmussen, Filip Anselm
  • Olsen, Thomas
  • Kuhar, Korina
Abstract

Localized electronic states formed inside the band gap of a semiconductor due to crystal defects can be detrimental to the material's optoelectronic properties. Semiconductors with a lower tendency to form defect induced deep gap states are termed defect-tolerant. Here we provide a systematic first-principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only shallow defect levels and are thus predicted to be defect-tolerant. Interestingly, all the defect sensitive TMDs have valence and conduction bands with a very similar orbital composition. This indicates a bonding/antibonding nature of the gap, which in turn suggests that dangling bonds will fall inside the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within the band gap.

Topics
  • density
  • impedance spectroscopy
  • theory
  • semiconductor
  • density functional theory
  • vacancy