Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Held, Jacob T.

  • Google
  • 4
  • 32
  • 100

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Spin and Charge Interconversion in Dirac-Semimetal Thin Films28citations
  • 2020Plasmonic nanocomposites of zinc oxide and titanium nitride4citations
  • 2020Thermal transport in ZnO nanocrystal networks synthesized by nonthermal plasma5citations
  • 2015Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement63citations

Places of action

Chart of shared publication
Yanez, Wilson
1 / 2 shared
Xiao, Run
1 / 1 shared
Mcqueen, Tyrel
1 / 2 shared
Samarth, Nitin
1 / 5 shared
Mkhoyan, K. Andre
4 / 17 shared
Ou, Yongxi
1 / 2 shared
Borchers, Julie A.
1 / 2 shared
Richardella, Anthony
1 / 3 shared
Sengupta, Abhronil
1 / 1 shared
Yang, Kezhou
1 / 1 shared
Grutter, Alexander J.
1 / 4 shared
Quarterman, Patrick
1 / 3 shared
Yan, Binghai
1 / 4 shared
Pillsbury, Timothy
1 / 1 shared
Delgado, Enrique González
1 / 1 shared
Chamorro, Juan
1 / 1 shared
Rable, Jeffrey
1 / 1 shared
Koo, Jahyun
1 / 1 shared
Kortshagen, Uwe R.
2 / 9 shared
Beaudette, Chad A.
1 / 3 shared
Concannon, Nolan M.
1 / 1 shared
Nguyen, Phong H.
1 / 2 shared
Aydil, Eray S.
2 / 9 shared
Greenberg, Benjamin L.
3 / 5 shared
Kortshagen, Uwe
1 / 3 shared
Zhang, Yingying
1 / 3 shared
Huang, Dingbin
1 / 2 shared
Wang, Xiaojia
1 / 5 shared
Barriocanal, Javier G.
1 / 1 shared
Wu, Xuewang
1 / 1 shared
Kramer, Nicolaas J.
1 / 1 shared
Ganguly, Shreyashi
1 / 1 shared
Chart of publication period
2021
2020
2015

Co-Authors (by relevance)

  • Yanez, Wilson
  • Xiao, Run
  • Mcqueen, Tyrel
  • Samarth, Nitin
  • Mkhoyan, K. Andre
  • Ou, Yongxi
  • Borchers, Julie A.
  • Richardella, Anthony
  • Sengupta, Abhronil
  • Yang, Kezhou
  • Grutter, Alexander J.
  • Quarterman, Patrick
  • Yan, Binghai
  • Pillsbury, Timothy
  • Delgado, Enrique González
  • Chamorro, Juan
  • Rable, Jeffrey
  • Koo, Jahyun
  • Kortshagen, Uwe R.
  • Beaudette, Chad A.
  • Concannon, Nolan M.
  • Nguyen, Phong H.
  • Aydil, Eray S.
  • Greenberg, Benjamin L.
  • Kortshagen, Uwe
  • Zhang, Yingying
  • Huang, Dingbin
  • Wang, Xiaojia
  • Barriocanal, Javier G.
  • Wu, Xuewang
  • Kramer, Nicolaas J.
  • Ganguly, Shreyashi
OrganizationsLocationPeople

article

Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement

  • Kortshagen, Uwe R.
  • Kramer, Nicolaas J.
  • Greenberg, Benjamin L.
  • Ganguly, Shreyashi
  • Mkhoyan, K. Andre
  • Held, Jacob T.
Abstract

<p>Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10<sup>20</sup> cm<sup>-3</sup> in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms - which hinder dopant incorporation in colloidal synthesis - are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation.</p>

Topics
  • surface
  • reactive
  • semiconductor
  • activation
  • liquid phase
  • defect structure
  • vacancy